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Summary

Access control is used in computer systems to control access to confidential
data. In this thesis we focus on access control for dynamic collaborative
environments where multiple users and systems access and exchange data
in an ad hoc manner. In such environments it is difficult to protect confi-
dential data using conventional access control systems, because users act in
unpredictable ways.

In this thesis we propose a new access control framework, called Audit-
based Compliance Control (AC2). In AC2 user actions are not checked
immediately (a-priori), like in conventional access control, but users must
account for their actions at a later time (a-posteriori), by providing machine-
checkable justification proofs to auditors. The logical proofs are based on
policies received from other users, and other logged actions. AC2 has a rich
policy language based on first-order logics, and it features an automated
audit procedure. AC2 allows users to exchange and access confidential data
in an ad hoc manner, and thus collaborate more easily. Applied in a medical
setting, for example, doctors would be able to continue their work, regard-
less of authorization issues such as missing patient consent, and missing or
outdated policies. Doctors can deal with these issues at a later time. Al-
though this unconventional approach may seem, at first sight, inappropriate
for practical applications, recently a similar design choice has been made
for the Dutch national infrastructure for the exchange of electronic health
records (AORTA).

At the same time we are aware of the fact that it is a big step for
organizations to change from a conventional access control mechanism (a-
priori) to a new mechanism. In this thesis we also take a more conventional
approach by proposing two extensions to Role-based Access Control (RBAC)
- an existing and widely used access control model. These extensions give
users more ways of authorizing and deploying RBAC policy changes, thus
favoring dynamic collaboration between users.





Samenvatting

Toegangscontrole wordt gebruikt in computersystemen om de toegang tot
vertrouwelijke gegevens te bewaken. In dit proefschrift richten we ons op
toegangscontrole in dynamische samenwerkomgevingen, waar meerdere ge-
bruikers en systemen gegevens uitwisselen en inzien op een ad-hoc manier. In
dergelijke omgevingen is het moeilijk om vertrouwelijk gegevens te bescher-
men met traditionele toegangscontrole systemen, omdat gebruikers op on-
voorspelbare wijze handelen.

In dit proefschrift stellen wij een nieuw toegangscontrole raamwerk voor,
genaamd Audit-based Compliance Control (AC2). In AC2 worden handelin-
gen van gebruikers niet direct (a-priori) gecontroleerd, zoals in traditionele
toegangscontrole, maar moeten gebruikers verantwoording afleggen voor hun
handelingen op een later moment (a-posteriori), door het verstrekken van
mechanisch-te-controleren bewijzen ter verklaring. Deze logische bewijzen
zijn gebaseerd op beleid ontvangen van andere gebruikers, en andere gelogde
handelingen. AC2 heeft een rijke taal voor het uitdrukken van beleiden, die
is gebaseerd op eerste-orde logica, en het heeft een geautomatiseerde audit
procedure. AC2 stelt gebruikers in staat om vertrouwelijke gegevens op een
ad-hoc manier uit te wisselen en in te zien, en zo om makkelijker samen
te werken. Toegepast in een medische omgeving, bijvoorbeeld, zou het zo
mogelijk zijn voor doktoren om door te gaan met hun werk, ongeacht au-
torisatieproblemen, zoals het ontbreken van toestemming van de pati ent,
en ontbrekend of oud beleid. Doktoren kunnen dergelijke problemen later
oplossen. Hoewel deze benadering op het eerste gezicht niet geschikt li-
jkt voor praktische toepassingen, onlangs is een vergelijkbare ontwerpkeuze
gemaakt voor de Nederlandse nationale infrastructuur voor het uitwisselen
van digitale medische dossiers (AORTA).

We beseffen tegelijkertijd dat het een grote stap is voor organisaties om te
veranderen van een traditioneel toegangscontrolemechaniek (a-priori) naar
een nieuwe (a-posteriori). In dit proefschrift nemen we ook een meer tradi-
tionele benadering door twee uitbreidingen van rolgebaseerde toegangscont-
role (RBAC) - een bestaand en wijd gebruikt toegangscontrole model - voor
te stellen. Deze uitbreidingen geven gebruikers meer mogelijkheden om belei-
dswijzigingen te autoriseren en uit te rollen, en daarmee vergemakkelingen
ze dynamische samenwerking tussen gebruikers.
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Chapter 1
Introduction

The digital world is changing rapidly. Distributed systems with multiple sys-
tems and users communicating through a network, have become pervasive.
For example, citizens use computer systems for social life, professional work,
political activities, and transactions with the government. In consultancy
firms, and research institutes, email and online services are used for better
collaboration and research. In hospitals, electronic health record systems
are used to collect and access quickly the needed health information about
its patients. In many different settings, the computer systems are exchang-
ing confidential data. Think of credit card numbers, mail addresses, social
security numbers, or health records. When designing and implementing
such computer systems, access control plays an important role: Confidential
data must be protected from unwanted access, and at the same time access
by the right users and systems is vital. In this thesis we focus on design-
ing flexible access control for the protection of confidential data in dynamic
collaborative environments.

1.1 Conventional Access Control

Generally speaking, the goal of an access control system is to prevent peo-
ple, or computers, from performing unwanted actions [56]. Access control
systems can be standalone computers, such as network firewall hardware
guarding access to the network, or be part of a larger system, for example
inside a database system guarding access to the tables. Let us briefly de-
scribe how an access control system works in general, before discussing the
different types of access control systems.

At step 1 (see figure 1) the user makes a request, for example, a remote
procedure call, or an operating system call. The request is received (or
intercepted) by the access control system’s reference monitor, which decides
whether the request should be granted or not. At step 2, the reference



2 Introduction

1 3

5

User

Reference
monitor

Resource

2

4

Figure 1: A sketch of a user interacting with an access control system

monitor consults an access control policy, to make the decision. This decision
is called an access control decision. At step 3, if the decision is positive, the
reference monitor communicates its decision to the resource, and in step
4 the reference monitor forwards the request to the resource. Finally, the
request is processed by the resource, and depending on the setting, data or
a confirmation are sent back to the user.

An access control policy can be based on a single configuration file, such
as a firewall rule list, or on data scattered across systems, such as the file
permissions in a Unix filesystem. It can contain permissions, such as ’Bob
is allowed to read document X’, prohibitions such as ’Alice is not allowed
to modify document X’, or more general statements, such as ’All users with
clearance B, can read documents of classifications B and C’. Access control
policies may concern properties of users, such as their name, or clearance,
properties of objects, such as the status of documents, environmental con-
ditions such as time, past user actions such as payments, or future actions
such as fair usage. For example, a digital license to play a copyrighted piece
of music three times, is a type of access control policy.

An access control model is an abstract description of how an access
control system works in practice. Prominent models are:

• Mandatory access control : in mandatory access control users with a
low clearance can not read documents with high classification, and
users with a high clearance can not write documents with a low clas-
sification. Mandatory access control is applied for instance in military
information systems.

• Role-based access control : in role-based access control only users in a
certain role can perform certain actions. Role-based access control is
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applied for instance in database systems such as Oracle.

• Discretionary access control : in discretionary access control the user
who has created the data has all the permissions about it, and the per-
mission to delegate his permissions to others (for example ownership,
or read access). Discretionary access control is applied for instance in
multi-user systems, such as Linux.

• Digital rights management : in digital rights management users do not
create any data, and user permissions may depend on factors like past
payments, the type of device being used, or the country the user is in.
Digital rights management is used in DVD players.

• Attribute-based access control : in attribute-based access control, only
users with certain attributes can perform certain actions. Attribute-
based access control is used in the XACML standard.

In the different access control models mentioned here, different types of poli-
cies are used to make access control decisions. In mandatory access control,
role-based access control, digital rights management and attribute-based ac-
cess control, the system administrator determines upfront who can access
which data. These policies are usually referred to as mandatory policies.
In discretionary access control, on the other hand, the user can change the
policies about data she created, or data she has received ownership of.

1.2 Dynamic Collaborative Environments

Dynamic collaborative environments can be found in hospitals, consultancy
firms, and research institutes. A dynamic collaborative environment (DCE)
is typically composed of different computers, often in different locations, and
used by a group of peer users who exchange data in an ad-hoc, and sometimes
unpredictable, way. DCEs are becoming more common, as more social,
civil and professional activities take place using computers and networks.
Protecting confidential data is difficult in DCEs because 1) It is not possible
to appoint a central authority which deals with data protection, 2) it is
impossible to foresee how users will collaborate, and 3) there is no time to
go through lengthy procedures to deal with data protection. The left side
of figure 2 shows how data is typically exchanged in an e-commerce setting,
where one computer interacts with multiple customers, in a centralized and
predictable way. The right side of figure 2 shows a dynamic collaborative
environment in a research institute, in which data is exchanged between
peers in an ad-hoc and decentralized way.

In a DCE it is important to strike a balance between protecting private
data from unwanted access (confidentiality), and guaranteeing timely access
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Figure 2: Data exchange in an e-commerce system (left side) and in a dy-
namic collaborative environment in a research institute (right side)

to it when needed (availability). Let us take an electronic health record
system for example:

• Unwanted access to health records may cause lifelong discrimination
of patients by employers, and insurance companies.

• If, on the other hand, hospital staff do not have access to the necessary
health records when needed they may make wrong diagnoses, or they
may have to perform extra medical exams. Costs of health care would
rise and the quality of the health care would drop. A report from 2003
showed that an estimate 170.000 patients were affected by incomplete
or inaccurate medical information, costing around 1.4 billion [35], every
year.

It is difficult to find the right balance between confidentiality and avail-
ability in DCEs, because the exchange pattern is complex and unpredictable.
Consider for example again an electronic health record system:

• Health records are created, exchanged, accessed and modified by med-
ical personnel across hospital shifts, across different hospitals, some-
times even across borders.

• Health records can be used for a variety of purposes, such as for medical
operations, for billing patients or their health insurances, for hospital
audits, or even research purposes.

• Medical data, whether it is output by an MRI scanner, or read from a
national health record database, is subject to regulations and restric-
tions on how and by whom it can be accessed and processed. Different
restrictions apply for different patients, different doctors, depending
on the details of the medical setting.

In health care, access and usage policies are particularly complex as they re-
sult from a combination of different requirements: Suppose doctor Alice asks
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nurse Bob to read a certain health record (for example, to monitor the tem-
perature of the patient) and to add certain data. The decision on whether
or not Bob may access it could depend on hospital regulations, or on patient
consent, but also on whether or not Alice is a certified physician, whether
she and Bob are officially treating the patient in question, or whether it is
an emergency or not. Taking all the relevant aspects into account in the
right way is difficult.

Let us give another example of a dynamic collaborative environment,
this time in the profit-sector: a consultancy firm. Hundreds of consultants
who work in different departments of the firm on projects for clients. In
consultancy firms most documents are confidential (but not top-secret): For
example, they may contain confidential sales figures from clients, or con-
fidential research results from the firm itself, that may only be shown to
employees. Again different documents are subject to different rules. For
example, certain documents may only be shown to employees of a certain
department of the firm, other documents may be shown to all the employ-
ees, and even to certain clients. Protecting confidential documents from
unwanted access is important, but, on the other hand, if consultants do not
get information they need in time, then the quality of the work drops, and
the costs for the clients rise. In many firms consultants collaborate also
across departments in a dynamic way. Suppose Alice, who works in the fi-
nancial department is working on a report for a client, needs help from Bob
on some text about technology. The decision on whether or not Bob, who
works in the technology department, can access Alice’s report depends on
the content of the report, the firm’s and financial department’s policy, on
prior agreements with the client, prior or current projects that Bob works
on for other clients, Alice’s role in the project, et cetera.

1.3 Research question

We have given an overview of conventional access control, and the charac-
teristics of dynamic collaborative environments. We argue that dynamic
collaborative environments have characteristics that complicate the deploy-
ment of a conventional access control system. Let us illustrate this by taking
a simple workflow in a dynamic collaborative environment.

Alice, Bob and Charlie are peers, with different expertise, working in
different departments. They collaborate when a project requires all their
expertise. Alice creates a new document, and she sends a message to Bob
asking him for his help. Bob reads the document and adds some extra
information to it. Bob gives the document to Charlie who stores it for
reviewing it later on. The document could be a health record, and Alice,
Bob, and Charlie could be medical staff. Or Alice, Bob and Charlie could
be employees of a consultancy firm, and the document a summary of sales
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figures of a client.
Conventional access control is not well suited for the workflow just de-

scribed: Mandatory or role-based access control only allows Alice, Bob and
Charlie to exchange data along a pre-defined role or clearance hierarchy. But
in this case, on the other hand, Alice, Bob and Charlie want to exchange
data across the organization’s hierarchy. Digital rights management and
attribute-based access control do not depend on a pre-defined hierarchy, but
they do not allow Alice to change the policy and disclose the document to
Bob. Only system administrators have the privilege to change policies. Dis-
cretionary access control allows users to change policies. If Alice owns the
document then she can give Bob write access to the document. But in discre-
tionary access control Alice cannot give the right to Bob to give read access
to Charlie (at least, not without giving full ownership to Bob). Moreover it
is well known that discretionary access control is not well-suited for settings
in enterprises, because in enterprises users rarely ’own’ the documents they
work on [33].

This leads to the main research question of this thesis:

How can we design a flexible access control system that is
suitable for dynamic collaborative environments?

There are two possible approaches to this: One could take an existing
access control model, and extend it with the needed features, or one could
design an entirely new access control model. We will do both in this thesis,
and compare the results in the final chapter.

1.4 Contributions

In this thesis we try to give answers to the research question in two ways:
1) We propose a new access control model and tools for implementing it
specifically tailored to dynamic collaborative environments. 2) We extend
RBAC to make it more suitable for dynamic collaborative environments.

• In Chapter 2 we introduce a new framework for controlling compli-
ance to discretionary access control policies: AC2. The AC2 frame-
work uses a simple policy language (based on first-order logic), that
models ownership of data, permissions, obligations, and also (nested)
delegation (by the maySay predicate). Users can create documents,
and authorize others to process the documents. AC2 uses a formal
audit procedure, to control compliance to the policies. Users may be
audited and asked to demonstrate that an action was in compliance
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with a policy. Justification proofs are implemented by a formal proof
system (a sequent calculus). We illustrate how the AC2 framework
can be used in a consultancy firm where a group of consultants pro-
duce and process confidential documents in a decentralized way. This
framework was published in the International Journal of Information
Security (IJIS) [2], as joint work with J. G. Cederquist, R. Corin,
S. Etalle, J. I. den Hartog and G. Lenzini, and based on early versions
of the AC2 framework published in conference proceedings [1, 25]. See
also the acknowledgements of Chapter 2 in Section 2.8.

• We have developed an automated proof checker for the AC2 proof
system. Proof checking is a central part of the AC2 audit procedure.
We give a description of the proof checker in Chapter 3. In the same
chapter we also derive an important logical result (a cut-elimination
theorem) about the AC2 proof system, which shows that the logic is
well-behaved (consistent), and that there exists a semi-decidable proof
finding procedure. We show, as a proof of concept, an automated
(justification) proof finder by using Prolog. Parts of Chapter 3 (the
details of the cut-elimination proof and a brief description of the proof
checker and the proof finder) were published in the International Jour-
nal of Information Security (IJIS) [2]. An early version of the proof
checker was presented in the proceedings of the 2005 IEEE POLICY
workshop [1].

• In Chapter 4 we show how AC2 can be used in a Electronic Health
Record (EHR) system in a hospital. We show that AC2 fulfills the
requirements of legislation on health care, while at the same time pro-
viding easy access to health records. Chapter 4 was published in the
2006 VODCA workshop proceedings [7], as joint work with S. Etalle.
A short version in Dutch, which is joint work with P. J. M. Veu-
gen, appeared in 2007 in a Dutch magazine for Infomation Security
professionals [8].

• In Chapter 5 we show how AC2 can be used in an Enterprise privacy
system. Enterprise privacy systems are used to enforce privacy policies
of customers across an enterprise. We compare AC2 with two (well-
known) privacy systems (E-P3P, and P3P) used in this setting, and we
argue that AC2 provides better privacy guarantees. This chapter was
published as a bookchapter in Security Privacy and Trust in Modern
Data Management, and is joint work with S. Etalle, and J. I. den
Hartog.

In the second part of this thesis we take a less revolutionary (and more
evolutionary) approach to answering our research question. We extend ANSI
RBAC, a widely used standard for role-based access control.
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• In Chapter 6 we propose a new administrative model for RBAC, which
is at least as safe, and more flexible than existing models. We also show
that our model can be implemented in an RBAC reference monitor. A
short version of our work was presented in the proceedings of the 2007
ACM ASIACCS symposium [3], as joint work with J. Cederquist, J.
Crampton and S. Etalle, while an extended version with full proofs
and examples was published in the proceedings of the 2007 Secure
Data Management workshop [5].

• In Chapter 7 we extend RBAC with a model and a basic procedure
for administration in distributed systems. Despite distributed systems
becoming more and more common, there is hardly any literature on
this aspect of implementing RBAC. This model, which is joint work
with J. Crampton and S. Etalle, was published in the proceedings of
the 2008 ACM SACMAT symposium [4].

1.5 Conclusions

In this thesis we address the research question of Section 1.3, by proposing
a new access control model (AC2) and by extending an existing on (RBAC).

AC2 starts from the basic assumption that users can behave badly. AC2

features machine-readable a-posteriori justification proofs through which
users can be held accountable for their behavior, whether appropriate or
not. We show the flexibility of our access control model, and how it can
be implemented in practice. By proposing extensions to RBAC we take a
more conventional approach. We propose a general class of administrative
policies, and efficient administrative procedures for distributed systems. We
show the flexibility of our model, and how it can be implemented in practice.

Although AC2 may represent a big change from conventional access con-
trol, there are several settings where our ideas may be applied in the near fu-
ture. The design of the future Dutch health record infrastructure (AORTA)
is based on the idea that all doctors may access health records, but that
they must be able to account for their use of medical data [46]. In AORTA
fine-grained a-priori access control is replaced by a-posteriori auditing of
logs of access to health records. In a different setting, Koot has argued
that AC2 has advantage over RBAC in the Service Oriented Architecture
of a Dutch insurance company [55]. We believe that there are many more
settings where our ideas may be put into practice in the near future.



Part I

Audit-based Compliance Control
Framework





Chapter 2
Audit-based Compliance
Control

2.1 Introduction

The problem of enforcing data protection policies, i.e. guaranteeing that
data is used according to predefined policies and rules, is present in all sit-
uations where IT systems are used to process confidential data. While this
is a universal problem, in different settings this influences the architecture
of an IT system differently. In general, the higher the degree of assurance
required, the more inflexible is the system enforcing it. For instance, in
military settings, where secrecy needs to be guaranteed at all costs, users
are willing to use a rigid access control system to enforce (mandatory) data
protection policies. In health care settings [85] more flexible systems are
needed which guarantee privacy of patients without interfering too much
with the availability of data, by allowing users to override mandatory pol-
icy [64, 74]. At the other end of the scale one finds dynamic collaborative en-
vironments where even more flexibility is demanded, and, as a consequence,
discretionary access control systems are prevalently deployed. Consider the
following example set in a dynamic collaborative environment:

Example 1 Alice creates a document, containing some public market anal-
ysis. She sends Bob the document and the policy: This may be seen and
modified only by employees. Bob, subsequently, adds extra information to
the document, making it more confidential, and sends it to Alice and Char-
lie with the (more restrictive) policy: This may be seen and modified only
by seniors. Now Charlie, a senior, needs someone to fix typos quickly and
the only one around is not a senior: It’s Dave a junior. He wants to send
the document to Dave, and allow Dave to get the work done and he is sure
Bob would agree, given the urgency, but Bob is not in the office to authorize
Dave. Charlie would like to change the policy himself (and authorize Dave),
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while taking the responsibility for the policy change.

This example, though simple, highlights the essential features of dynamic
collaborative environments. First, there is no central authority that issues
and enforces policies. Second, it is difficult to determine which is the policy
that applies to a given document: when Alice creates d1 and gives Bob the
policy φ, say to read it, Bob has no way of checking that φ is the ’right’
policy for d1. For instance, Alice could have sent a confidential document
for which she could not authorize Bob. Bob can only trust Alice’s word on
it. Third, in a dynamic collaborative environment, users are administrators
themselves, and it becomes important to be able to express administrative
policies, stating i.e., who may authorize other users. Fourth, dynamic collab-
orative environments often present rapid changes. There is not always time
to align all applicable policies first. Infringement by users should be possible
in some way, to avoid blocking the work of the users. Going back to our
example, Alice, Bob and Charlie would otherwise bypass the access control
system (for example by exchanging passwords, or by exchanging documents
outside of the access control system).

Standard techniques for protecting documents include Access Con-
trol [44] and Digital Rights Management [89]. In access control and digital
rights management systems documents are stored or processed in some con-
trolled environment (e.g., a database or a special device). A general problem
of mandatory access control and that of DRM is that only a few central users
can issue policies, and that users do not own documents they create, if they
can create documents at all. A more flexible approach is discretionary access
control, where users can create documents and subsequently issue policies
about these documents, and authorize other users. Discretionary access con-
trol (e.g. present in Windows and Unix filesystems) is used pervasively in
dynamic collaborative environments. However, there is a well-known prob-
lem with discretionary access control: a user can always create a document
and copy a confidential document into it, and claim it as his. To address this
problem, Trust Management (TM) systems have been developed [21], where
it is the user who is supposed to infer whether the issuer of the authorization
can be trusted. For example by inferring the reputation of a user, or the
credentials. Checking whether a license is issued by the right authority is
often feasible in DRM. Everybody knows licenses for Purple Rain are issued
by Sony, everybody knows Windows XP licenses are issued by Microsoft).
However, in a dynamic collaborative environment judging the genuineness of
an authorization for a document is harder because of the variety of possible
sources and the complexity of the environment. All the users create, send,
modify documents, and ask others to review or change. At the same time,
legislation increasingly demands compliance to policies, and accountability
with regard to the disclosures of confidential documents [85, 84, 86].
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In an attempt to solve this problem, we take a different approach, which
we call audit-based compliance control. The most eye-catching element of our
framework is the fact that policies are not enforced a-priori, but checked a-
posteriori. We will show that this gives users more flexibility, and that it in
certain settings it can be used to control compliance of users to policies.

We should stress here that our framework can not replace all a-priori
access control systems in an organization, rather it is a way of controlling
compliance of users in a closed setting, such as a hospital or a consultancy
company. It must be feasible to hold users accountable, before they leave the
system. Ordinary a-priori access control is still needed to prevent outsiders
from entering the closed setting.

Basically, we assume the presence of an auditing authority with the task
and the ability to observe the critical actions of the users. This requires that
users are somehow operating within a well-defined environment. Assuming
the presence of such an environment is not unreasonable:

• Employees in companies are often operating from especially prepared
computers, where logging systems are present, and they often access
central systems such as databases that log transactions as well.

• Logs are often kept already not only for detecting flaws, but also to
comply with legislation on accountability and auditability [85, 84].

• Discretionary access control, which is widely used and deployed, also
assumes that user actions are audited [76].

We assume also that that the user can keep a secure log of certain actions
and or certain circumstances, to prove the necessary facts to the auditors.
This a reasonable assumption as well. Depending on the setting, they could
be for example cryptographically signed return receipts, that a certain pay-
ment was made, or request, or response messages from webservices in a
service oriented architecture.

While the fact that compliance checking is done a-posteriori is super-
ficially the most striking element of our framework, there are two other
ingredients which we would like to mention here.

1. We propose a simple policy language, based on first-order predicate
logic. Its operational semantics is defined by a formal proof system,
which is an extension of the first-order logic proof system and specifi-
cally tailored for discretionary access control policies. First-order logic
is more expressive than for example Datalog, which has been used in
numerous existing access control frameworks (see the section on Re-
lated work). Our proof system allows users to express and refine delega-
tion of rights, and to refer to conditions and (pre- or post-) obligations
in policies they give to other users. This is not possible in a number
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of legacy access control systems, such as RBAC, or XACML. Impor-
tantly, despite the expressiveness of the language we demonstrate that
the proof system is semi-decidable by proving a cut-elimination theo-
rem. Consistency of the proof system also follows from cut-elimination.
We are the first to use a cut-elimination theorem for an access control
logic.

2. Another important feature of our system is that users, instead of hav-
ing to check whether a received policy is the right policy for a given
piece of data, they simply assume the policy to hold. This is different
from what is usually done in, Trust Management [21] or other dis-
tributed access control frameworks [9], where the receiver of a policy
must make some kind of trust calculation. Referring to Example 1: In
AC2, if Alice is not an authority on the document nor the real creator
of the document, then the auditor will not blame Bob, but instead put
the blame on Alice.

In this chapter we give a brief overview of our system (Section 2.2).
We describe the overall framework in Section 2.3, introducing the policy lan-
guage syntax, the logging mechanism and the audit procedure. In Section 2.4
we define the semantics of our language by defining a formal proof system,
while in Section 2.5, we show, by giving an example, how the framework can
be used in a common dynamic collaborative environment: A consultancy
firm where protection of confidential documents is needed. Chapter 3, con-
tains the technical details about the proof system. There we show that the
cut-elimination theorem holds, which is an important technical result that
implies consistency and semi-decidability, and we show prototypes of both
the proof finder and the proof checker.

2.2 Overview

In our framework compliance of users to policies is checked a-posteriori.
This approach yields a more flexible system for the users, but requires that
users take responsibility for their actions. The two main assumptions for
this approach are the following.

1. Auditors can observe critical actions. Hence there must be a suffi-
ciently comprehensive audit trail, which can not be forged or bypassed,
containing the relevant details about the actions and the identity of
the users executing them.

2. All the users of the system can be held accountable for their actions.
Hence it is required that users only vanish after having accounted for
past actions.
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Figure 3: Sample deployment depicting actions, the logging and interaction
with an auditing authority.

Although we agree that in some settings these assumptions are not re-
alistic (for example in the setting of an online video store with thousands
of customers across different continents), this does apply to organizations
such as companies, or hospitals. This will be discussed further in section
Section 2.5 and in the conclusions of this chapter.

Intuitively, the framework works as in the following example: Bob re-
ceives from Alice the authorization φ to read a document d1. Bob reads
the document d1. As mentioned in the introduction, Bob does not check
whether or not Alice is one of the authorities that can issue policies about
d1, or just entitled to say φ. Bob simply proceeds to read the document d1,
and relies on the auditor to check the actions of Alice.

Figure 3 shows a sample run in the framework: In the first step (1),
user a provides a policy φ to user b which b records in its log (2). Next (3)
user b reads document d1. We don’t make assumptions on how ’reading’ is
implemented (e.g. whether document d1 is stored centrally, or sent across
by email), neither about how the logs of Alice and Bob are implemented
(for example on a shared server, or at separate workstations). In fact in
the figure we have depicted another agent c (Charlie) that shares a log with
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Alice on a multi-user system.
At a later point the auditing authority, who guards access to sensitive

files, finds the access of b (4) and requests b to justify this access (5). User b
responds to the audit, and replies with a justification proof π, which shows
that the access was allowed according to the policy φ, communicated by a.
The auditor, though initially unaware of a’s involvement, can now (7) audit
a for having communicated the policy φ to b.

In the figure both users a and b are asked to provide a justification proof,
but we have not made assumptions about when they generated the justifica-
tion proofs. In some scenario’s users may decide to go ahead and wait with
finding the proof, for example because the right authorizations still need
to be issued (for example emergency treatment with only informal patient
consent). In other scenario’s users may want to check beforehand whether
a justification proof exists (see for example the section 2.3.5 Honest strat-
egy), and generate the proof immediately. A user-friendly solution would
be to supply users with a kind of reference monitor that checks if a justifi-
cation proof can be found quickly, then allows the user to continue without
a justification proof, or cancel.

For reasons of privacy, it is left to the individual users to access their
logs and use the right parts to justify their actions. The auditor only checks
the justification proof, and the parts of the log that are needed to support
the proof, while the parts of the log of the users not needed in the proofs
can remain confidential. In settings where the auditor is trusted, proofs may
even be generated by the auditor, possibly by using facts about the users,
or general policy.

2.3 Framework

In this section the basic definitions of the AC2 framework are introduced.
The section is organized as follows: We discuss the policy language used in
the audit framework and we describe the logging mechanism, which is used
by the agents to provide evidence for the justification proofs. In the end we
give the formal definition of auditing and accountability.

2.3.1 Policy language

In our framework we use a simple policy language, which is in some respects
similar to the languages used in Binder [30] and PCA [12]. We will return to
the main differences in the related work section of this chapter (Section 2.6).

Basic permissions for actions are expressed using atomic predicates. The
objects of these predicates are agents and data. Agents are users, or pro-
grams or devices operating on behalf of users. We have a set AG =
{a, b, c, . . .} of agents and a set DA = {d1, d2, d3 . . . } of data. For exam-
ple the predicate mayRead(a, d1 ) expresses that agent a has permission to
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read data d1. Additionally, atomic predicates are used to express basic con-
ditions or facts, e.g. isEmployee(a) expresses the fact that agent a is an
employee.

Actions are represented by a set AC, containing

• create(a, d1 ), expressing a has created data d1,

• comm(a, b, φ), expressing a communication of a policy φ from agent a
to b,

• scenario-specific actions like read(a, d1 ), write(a, d1 ), etc.

In our model we make a distinction between actions and instances of
actions. Different instances of an action are distinguished using a unique
identifier i ∈ N, as in createi(a, d1 ). Formally this gives a set AC∗ ⊂ N →
AC of action instances.

The grammar for the policy language is based on the grammar for first-
order predicate logic. It has been shown that first order predicate logic is
sufficiently expressive to model a wide range of access control policies [40].

Definition 1 (Policy grammar) Let si be agents or data and act an ac-
tion, the set PO of policies, ranged over by φ is defined by the following
grammar:

φ ::= p(s1 , ..., sn ) | ⊤ | maySay(a, b, φ) | owns(a, d1 )

| φ ∧ φ | ∀x.φ | φ→ φ | ξ → φ | act!→ φ | act?→ φ

where ξ are called obligations, and act ∈ AC are actions.

Atomic predicates in the grammar are either ⊤, which is the trivial policy
(true) that can always be derived, or scenario-specific predicates, denoted
by p(s1 , ..., sn ), where s1, ..., sn are agent or data variables. For example,
depending on the scenario, mayRead(a, d), and mayWrite(a, d).

Please note that, unlike in ordinary logics, we do not include an atomic
predicate for falsity ⊥, and hence negation ¬ can not be expressed. Falsity
would be a policy that allows a user, who can derive it, to do anything, and
since we do not see a practical use for such a policy we omit it here.

The maySay() construct is used to express the right to delegate rights,
and the policy maySay(a, b, φ) means that a is authorized to say φ to b.
This type of policy is also known as administrative policy (about φ). We
are not aware of existing access control logics that use this type of construct.
This is due to the fact that in existing proposals, instead of modeling who
may say a statement, the receiver of a statement must decide whether or
not to trust it (see Section 2.6 for more details).

Central in our framework is the notion of refinement of administrative
policies: Refinement is defined as follows. If an agent is authorized to say a
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certain policy, then it is also (implicitly) authorized to say a weaker (refined)
policy. This allows for a flexible delegation of policies, allowing a user to say
a more restricted policy, for instance by adding more conditions.

The predicate owns() has the usual meaning, stemming from discre-
tionary access control models [44]: If an agent is the owner of a piece of
data then it can derive policy formulae about that piece of data, and com-
municate any policy about the data to other agents. Owners can make other
users owner too.

The conjunction ∧ and the universal quantification ∀ have their usual
meaning. The operators for disjunction and existential quantification are not
included in the grammar. This is done for the sake of simplicity. Implication
→ has the usual meaning, and φ → ψ, states that a proof of φ is needed
to obtain the permission ψ. The connectives !→ and ?→ are used to express
use-once and use-many obligations in policies. When a user fulfills a use-
many obligation act of a policy act?→ φ, then the policy applies to any
number of actions allowed by the policy φ. Fulfilling a use-once obligation
act of a policy act?→ φ, however, can only be used once for a single action.
The logging mechanism, reported below, and a type of linear logic, to be
defined in Section 2.4, are used to implement the use-once obligations. We
give a brief example: Suppose a user a receives a policy pay(a, pound)!→
mayViewVideo(a, d1 ) then this means that a is allowed to view the video
once, for each time he logs a payment of a pound.

Remark 1 (Logics in access control) Most access control systems can
be modeled using logics [9]. From that point of view authorizations are (se-
curity) predicates, and the access control decision that grants access corre-
sponds to proving that the predicate, that allows the access, holds. Even
though the formal semantics of such logics is not always straightforward [9]
- the same can be said for intuitionistic predicate logic - logical derivations
are well understood, and logics are useful to analyze properties such as de-
cidability and consistency.

Remark 2 (Decidability of the language) The decidability of policy
languages is an important issue for the practicality of an access control sys-
tem [9, 61, 40]. Most systems use decidable logics [61, 40, 14, 30, 59, 39, 18,
21]. For a decidable logic there are procedures that decide whether a state-
ment is true or false. For a semi-decidable logic there are only procedures
that decide for the true ones, while they may remain undecided about the
false ones.

Expressive policy languages are often semi-decidable or undecidable [12,
18]. Our framework uses an extension of first-order predicate logic, which
is (only) semi-decidable. This type of undecidability is not a problem in our
setting, because the agents and not the auditing authority are expected to
find proofs.
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Let us illustrate this difference by a brief example. Suppose R is an access
control reference monitor, that uses an semi-decidable policy language. In
this case, each time users request access that is not allowed, there is the
risk that R cannot decide. Some mechanism would be required that makes
R give up searching, and continue with the requests of the other users. On
the other hand, suppose instead A is an auditor who requires users to find a
justification proof themselves. In this case, if one user tries to find a proof
for access that is not allowed, then only this user looses time, while A can
continue to audit other users.

Remark 3 (Concerning obligations) Obligations have been used in
other access control systems with a different meaning [66, 53]. In these
proposals obligations are call-back functions that have to be executed by the
access control mechanism, before access can be granted. In our approach obli-
gations are actions that have to be performed by the user. Our approach is
similar to the approach taken in the UCON framework [68]. Post-obligations,
obligations to be fulfilled later on, are hard to implement when using a-priori
access control, because a separate audit mechanism would be needed to check
if promises have expired or if they were fulfilled. In our framework, because
an audit mechanism is already used, post-obligations are straightforward to
implement.

2.3.2 Proof obligation and conclusion

In our framework, the proof obligation function and the conclusion derivation
functions link policies and actions. They are public functions which are
known to all users. This ensures that all the users are aware of the meaning
of the basic permissions. A straightforward way to implement this would be
to use a central trusted authority that provides them to all users.

• The proof obligation function describes which policy an agent needs to
satisfy in order to justify the execution of an action.

pro : (AC × AG) → PO

• The conclusion derivation function, describes what policy an agent
can conclude from the evidence of an action that occurred.

concl : (AC × AG) → PO
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For the default actions, create(a, d1 ) and comm(a, b, φ), we have:

pro(create(a, d1 ), b) = ⊤ (2.1)

pro(comm(a, b, φ), a) = maySay(a, b, φ) (2.2)

pro(comm(a, b, φ), c) = ⊤ (a 6= c) (2.3)

concl(create(a, d1 ), a) = owns(a, d1 ) (2.4)

concl(create(a, d1 ), b) = ⊤ (b 6= a) (2.5)

concl(comm(a, b, φ), b) = φ (2.6)

concl(comm(a, b, φ), c) = ⊤ (c 6= b) (2.7)

This can be explained intuitively as follows: (2.1) agents do not need permis-
sions for creating data. (2.2) in a communication, the source agent needs an
authorization to say a policy. (2.3) other agents do not. (2.4) an agent who
creates data can conclude that it is the owner of the data. (2.5) other agents
cannot conclude anything from a creation action. (2.6) the target agent in
a communication can conclude the corresponding policy. (2.7) other agents
cannot conclude anything from a communication.

2.3.3 Logging actions

In our framework agents execute actions, and may need to justify them later
on. We assume that agents have a basic log at their disposal to store se-
curely facts, for example about the circumstances under which they perform
actions, and to store evidence of actions they or other agents have performed.
Note that we do not make any assumptions on whether agents share a log-
ging device (for example on a central server), or if they each have separate
devices. We model the log of an agent by the following basic definition:

Definition 2 (Logged action) A logged action is a triple lac =
〈actid,Γ,∆〉 consisting of an action instance actid ∈ AC∗, a set of facts
Γ ⊆ PO (the conditions), and a set of action instances ∆ ⊂ AC∗ (the
use-once obligations). The log of an agent a is a list of logged actions.

It is the choice of the agent whether or not to log an action. It is only impor-
tant that individual log entries can not be forged, and cannot be modified
later on. For example, it can be favorable to log the conditions under which
an action was performed, or to log a communication of a policy from another
agent to demonstrate that a subsequent action was allowed.

Additionally, an agent can log actions it performs by itself, including
related conditions, i.e. facts about the current situation that the logging
devices certifies to be valid, the time, the location, or the type of computer
the agent uses to execute the action. We do not model this explicitly, but
we assume that the agent obtains a secure package of facts from its logging
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device, represented by Γ. As an aside note that, to deal more efficiently with
facts that remain true all the time, one could also have a set of global facts
which then do not have to be included in each logged action.

The list ∆ indicates the use-once obligations the agent consumes. The
list ∆ refers to instances of actions the agent did or promises to do, related
to the action. We abstract away from the details of expressing promises,
and instead assume we have a way to check if promises have expired. For
example, if a policy states that the agent may modify a document provided it
notifies someone within a day, then the agent must create a future reference
to a notification action and fulfill this obligation within a day.

To prevent that logged actions are forged, the logging device must be
somehow tamper-resistant. The logging device should protect some basic
consistency properties of its log:

• An agent can log the same action at most once, i.e. there cannot be
two different logged actions 〈actid,Γ,∆〉 and 〈actid,Γ

′,∆′〉 in the log
for the same action actid.

• An action can only be used one time as a use-once obligation, i.e. an
action actid may not occur in the obligations ∆ of two different logged
actions in the log.

Now, we want to introduce the concept of system. To this end, we need
the following definition:

Definition 3 (System state) A system state is a collection s of logs of
the different agents, i.e. a mapping from agents to lists of logged actions
s : AG → AC∗. We denote by S the collection of all states.

The system model is defined as a labeled transition system:

Definition 4 (Transitions) A system is a tuple: 〈S,L,→〉, where S is the
powerset of S, introduced in Definition 3, L = AC∗ × P(AG) is the set of
transition labels consisting of an action and a set of agents that log that
action, and

→ ⊆ S × L× S

is the transition relation. We use the notation s
act,L
−−−→ s′ for

(s, (act, L), s′) ∈ →.

A transition models an action happening in the system and being logged
by some agents observing the action. Thus we have

s
act,L
−−−→ s′

when L ⊆ AG and act ∈ AC∗. The full state s can be decomposed in
substates for individual agents. The state of agent a is denoted s(a).
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Given the above transition between s and s′, s′(a) = s(a) if a /∈ L and
s′(a) = s(a).act if a ∈ L where act is a log of action act by agent a. In
other words, s′ is the same as s except that act has been logged by the agents
in L. s0 ∈ S is the initial state in which all logs are empty.

An execution of the system consists of a sequence of transitions

s0
act1,L1
−−−−−→ . . .

actn,Ln
−−−−−→ sn,

starting with the (empty) initial state s0. The execution trace (tr) for this
execution is act1 . . . , actn. In a state s the log s(a) of an agent a can also be
seen as a trace of actions (by ignoring the conditions and obligations logged
with the actions). As a’s log is initially empty and a can only log actions
that actually occur, a’s log is a sub-trace of the execution trace, i.e. we have
sn(a) � tr, where � denotes the sub-trace relation (tr1 � tr2 iff tr1 can be
obtained from tr2 by leaving out actions but maintaining the order of the
remaining actions).

Example 2 (Execution trace) For example the execution trace for the
actions of Figure 3 is as follows:

create(a, d1 ), comm(a, b,mayRead(b, d1 )), read(b, d1 ).

The log of agent b is only a subtrace:

comm(a, b,mayRead(b, d1 )), read(b, d1 )

2.3.4 Audits

Agents may be audited by some auditing authority, at some point in the
execution of the system. This authority will audit the agent to find out
whether the agent is able to account for the actions it initiated.

Before going into the details of how this can be implemented, we fix
some notations: The knowledge of the auditing authority is represented by
an evidence trace E which is a sub-trace of the execution of the system (up
till now). For example the evidence trace could be the transaction log of
some central database, or a log of some fileserver. Which actions are in E
depends on the power (and possibly the interests) of the authority; a more
powerful authority will in general be able to collect a larger evidence trace.
When an auditor audits agents, using an evidence trace, agents are asked to
account for the actions they performed in the evidence trace by providing
valid proofs for them. If an action was logged by the agent, then the agent
can also use the conditions or fulfilled obligations, logged with the action, in
the proof. If the agent did not log the action it will have to provide a proof
which does not depend on conditions or fulfilled obligations. This shows
why it can be advantageous for agents to log actions.
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Definition 5 (Action accountability) We say that an agent a correctly
accounts for an action act if it provides a valid proof of Γ1,Γ2,∆ ⊢a
pro(act, a) where Γ1,Γ2 and ∆ must be empty if the agent a did not log
the action at all, while otherwise the list Γ2 may contain logged actions from
the log of agent a where Γ1,∆ are the conditions and obligations logged with
the action act.

Such a valid proof is called a justification proof. We will go into details
about the definition of ⊢ (read entails) in the next section. The justification
proof reveals new actions in Γ2 and ∆. Accountability with respect to an
evidence trace E is defined by taking into account also those new actions.

Definition 6 (Accountability) We say an agent a passes the audit (or
accountability test) E, written ACC(a, E), if it correctly accounts for all
actions in E and for all actions revealed by proofs it provides.

In providing a proof of accountability for an action, the agent may reveal
actions that were not yet known to the auditing authority. These actions
may be added to the actions to be audited i.e. the evidence trace. Clearly,
it is also possible to have an authority which iteratively audits all agents
involved in actions in the evidence trace. In this case newly revealed actions
may require the authority to revisit agents or add new agents to its list.
Since, the number of actions to be audited is always limited by the number
of actions executed in the system we know the process will still terminate.

2.3.5 Honest strategy

A straightforward strategy for an honest agent a to be able to pass any audit
is to derive the proof obligation pro(act, a), before executing an action act.
If the proof needs conditions or obligations, then the action act itself must
be logged.

Theorem 1 (Accountability of honest agents) If agent a follows the
honest strategy, then for any system execution and any auditing authority
with evidence trace E, we have that ACC(a, E) holds.

Proof 1 The proof is straightforward. If the evidence trace E contains an
action act for which pro(act, a) is not trivial, then it can provide a justifica-
tion proof for it. The justification proof may refer to conditions, obligations
or evidence of prior actions, which have been logged by the agent. The ad-
ditional actions, thus revealed by the agent, can be justified by the agent in
the same way.

For the sake of simplicity we have assumed that the agents must pro-
duce all the justification proofs, when auditors ask for them. Nevertheless,
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variations are possible: for instance, in a different form of our system, the
burden of producing the proofs may be left to the auditors. In another vari-
ation, the user may be required to log the proof (when possible, together
with the action). Finally, when the auditor is trusted by the agents, they
can submit (part of) their logs to the auditors. In this case, the auditor
can single out the actions that can not be justified, and ask only for those
actions for a justification by the agent. In any case, finding a proof may be
expensive and difficult. Tools that automate the process of finding proofs,
and replying to audits automatically are important here. We present tools
for our framework in Chapter 3.

The way the auditor collects an evidence trace, and how bad actions can
be observed by the auditor, has been left unspecified. For the first part,
collecting an evidence trace, the trivial solution is to collect evidence of all
the actions, and audit all of them. One could also use anomaly detection
and audit the ’usual’ actions less frequently. The second part, observing bad
actions, poses a challenge as well. In our framework, the proof obligation
function for creating any document yields the trivial policy. The problem of
auditing which kind of data is introduced into the system is still needed how-
ever. It should be prevented for example that a user who owns a document,
writes some secret data d1 into it, in order to bypass security policy for d1.
This is a general problem of discretionary access control systems [44]. To
model this step our framework should be extended with a second review of
the evidence, after the justification proof has been validated (for example a
human review). The details of this part of the auditing is beyond the scope
of our framework.

2.4 Proof System

We now introduce a proof system, underlying the accountability relation
(the ⊢ symbol). The proof system allows agents to derive, possibly refer-
ring to evidence in their log, certain policy formulae. The proof system (to
be introduced below) is an extension of the sequent calculus for intuition-
istic first-order logic, tailored to the justification proofs needed in the AC2

framework.

2.4.1 Sequent notation

Throughout this section we use sequent notation for proof rules, a notation
which is explicit about the assumptions used in proofs. To familiarize the
reader with the sequent notation we report the standard proof rules for →, ∧
and ∀ in Figure 4. In the sequent notation Γ represents a set of assumptions,
and Γ, φ denotes a set of assumptions that contains φ. Γ is usually referred
to as the (logical) context. In the last line, as usual, in ∀I y must be ’free’
(i.e. not occurring in formulas in Γ), and in ∀E z is an arbitrary value.
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Γ, φ ⊢ φ
I

Γ ⊢ ⊤
⊤I

Γ, φ ⊢ ψ

Γ ⊢ φ→ ψ
→ I

Γ ⊢ φ Γ ⊢ φ→ ψ

Γ ⊢ ψ
→ E

Γ ⊢ φ1 Γ ⊢ φ2

Γ ⊢ φ1 ∧ φ2
∧I

Γ ⊢ φ1 ∧ φ2

Γ ⊢ φ1
∧E1

Γ ⊢ φ1 ∧ φ2

Γ ⊢ φ2
∧E2

Γ ⊢ φ(y)

Γ ⊢ ∀x.φ(x)
∀I

Γ ⊢ ∀x.φ(x)

Γ ⊢ φ(z)
∀E

Figure 4: Natural deduction calculus for first-order predicate logic, in se-
quent notation.

The AC2 proof system extends the →, ∧, ∀ fragment of (intuitionistic)
first-order logic in the following way:

• In AC2 different agents can derive different proofs. For this reason
we annotate the entailment relation ⊢ with the name of the agent ⊢a.
For the example, the policy owns(a, d1 ) allows agent a to derive any
policy that only affects d1. But this is not the case for agent b.

The conclusion derivation function concl() links policies and actions,
allowing agents to derive policies from actions. This is expressed by
the following rule.

α ∈ Γ2 concl(α, a)

Γ2 ⊢a φ
,

where Γ2 contains actions that are in the log of agent a, executed either
by him, or by others.

• For the semantics of owns (see the description of the grammar in
Section 2.3.1) we must define which policies affect which data. We
define the function data aff : PO → P(DA) for policies, such that
if data aff(φ(d1)) = {d1} then the policy φ only affects the data d1.
The semantics of the owns predicate is formalized as follows.

Γ ⊢a owns(a, d1 ) ∧ ... ∧ owns(a, dn ) data aff(φ) ⊆ {d1, ..., dn}

Γ ⊢a φ

Basically, if a policy φ only affects the data {d1, ..., dn}, then if the
agent a owns all the data {d1, ..., dn}, then φ can be derived by agent
a.

• The maySay(a, b, φ) construct expresses the right to delegate a policy
(see the description of the grammar in Section 2.3.1). This means that
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maySay(a, b, φ) implies maySay(a, b, ψ) if φ implies ψ, denoted φ→ ψ.
This is expressed as follows:

⊢ (φ1 → ...→ (φn → ψ)) Γ ⊢a maySay(b, c, φ1 ) ∧ ... ∧maySay(b, c, φn )

Γ ⊢a maySay(b, c, ψ)

The refine-rule allows to derive for example maySay(b, c, φ ∧ ψ)
from the separate policies maySay(b, c, φ) and maySay(b, c, ψ), and
maySay(b, c, φ → ψ) from maySay(b, c, ψ)). In other words agents
who can say a certain policy φ can always say a more restrictive poli-
cies (with more conditions, or fewer privileges) to other agents. The
first premise has an empty sequent to avoid that assumptions that
hold only for agent a (and can not be said to b) are used to derive
policies for b.

• In ordinary natural deduction there is only one type of assumption.
Therefore a single context (Γ) is normally used. In the AC2 frame-
work the policies are derived from conditions and actions so we use
three separate contexts to distinguish the three different types of as-
sumptions.

Remark 4 (Proof by contradiction) Note that we not included the ex-
cluded middle (¬φ∨φ), or double-double negation (¬(¬φ) → φ) to allow for
proofs by contradiction. Our logic is constructive. We believe that in our
framework where the auditing authority may inquire several agents, the use
of constructive proofs makes it easier for the authority to keep track of the
chains of responsibilities. A proof by contradiction of the policy there exists
an agent who told me that I am allowed to . . . would not tell, for instance,
the authority which authorization is being used.

2.4.2 Sequent calculus

We now convert the proof rules (in natural deduction style) to a sequent
calculus. Sequent calculi are due to Gentzen, and they are more suitable
for analysis and automated proof search than natural deduction style proof
systems. The full sequent calculus of AC2 is shown in Figure 5: We use
φ and ψ to denote policies, while α denotes an action. Sequents have the
form Γ1; Γ2;∆ ⊢a φ, where a is the agent doing the reasoning, and Γ1, Γ2

and ∆ are three different contexts. The sequent Γ1 is a list of policies. The
sequent Γ2 is a list of actions from the agent’s log, which are used to derive
conclusions using the conclusion derivation function concl, or as use-once
obligations. The sequent ∆ is a linear context, which contains a list of
actions except that there is no way to reuse an action twice (see below).
The linear context is used for use-once obligations. The empty context is
denoted ν.
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Γ1, φ; Γ2;∆ ⊢a φ
I

Γ1; Γ2;∆ ⊢a φ Γ1, φ; Γ2;∆
′ ⊢a ψ

Γ1; Γ2;∆,∆′ ⊢a ψ
cut

Γ1; Γ2;∆ ⊢a ⊤
⊤R

Γ1; Γ2;∆ ⊢a φ Γ1; Γ2;∆
′ ⊢a ψ

Γ1; Γ2;∆,∆′ ⊢a (φ ∧ ψ)
∧R

Γ1, φ1; Γ2;∆ ⊢a ψ

Γ1, (φ1 ∧ φ2); Γ2;∆ ⊢a ψ
∧L1

Γ1, φ2; Γ2;∆ ⊢a ψ

Γ1, (φ1 ∧ φ2); Γ2;∆ ⊢a ψ
∧L2

Γ1; Γ2;∆ ⊢a φ1 Γ1, φ2; Γ2;∆
′ ⊢a ψ

Γ1, (φ1 → φ2); Γ2;∆,∆′ ⊢a ψ
→ L

Γ1, φ; Γ2;⊢a ψ

Γ1; Γ2;⊢a (φ→ ψ)
→ R

Γ1, φ(x); Γ2;∆ ⊢a ψ

Γ1,∀y. φ(y); Γ2;∆ ⊢a ψ
∀L

Γ1; Γ2;∆ ⊢a φ(x)

Γ1; Γ2;∆ ⊢a ∀y. φ(y)
∀R

Γ1, φ, φ; Γ2;∆ ⊢a ψ

Γ1, φ; Γ2;∆ ⊢a ψ
C-L1

Γ1; Γ2, α, α;∆ ⊢a ψ

Γ1; Γ2, α;∆ ⊢a ψ
C-L2

Γ1, φ1, φ2,Γ
′
1; Γ2;∆ ⊢a ψ

Γ1, φ2, φ1,Γ′
1; Γ2;∆ ⊢a ψ

P-L1
Γ1; Γ2, α1, α2,Γ

′
2;∆ ⊢a ψ

Γ1; Γ2, α2, α1,Γ′
2;∆ ⊢a ψ

P-L2
Γ1; Γ2;∆, α1, α2,∆

′ ⊢a ψ

Γ1; Γ2;∆, α2, α1,∆′ ⊢a ψ
P-L3
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Γ1, φ; Γ2;∆ ⊢a ψ

Γ1, (α!→ φ); Γ2;∆, α ⊢a ψ
!→ L

Γ1; Γ2;∆, α ⊢a φ

Γ1; Γ2;∆ ⊢a (α!→ φ)
!→ R

Γ1, φ; Γ2;∆ ⊢a ψ

Γ1, (α?→ φ); Γ2, α;∆ ⊢a ψ
?→ L

Γ1; Γ2, α;∆ ⊢a φ

Γ1; Γ2;∆ ⊢a (α?→ φ)
?→ R

Γ1, concl(α, a); Γ2;∆ ⊢a ψ

Γ1; Γ2, α;∆ ⊢a ψ
obs-act

Γ1; ν; ν ⊢a ψ

Γ′
1,maySay(b, c,Γ1 ); Γ2;∆ ⊢a maySay(b, c, ψ)

refine

data aff(φ) ⊆ {d1, . . . , dn}

Γ1, owns(a, d1 ), ..., owns(a, dn ); Γ2;∆ ⊢a φ
owns-L

Γ1,maySay(b, c, (owns(a, d))); Γ2;∆ ⊢a maySay(b, c, ψ)

Γ1, owns(a, d); Γ2;∆ ⊢a maySay(b, c, ψ)
owns-maysay

Figure 5: The proof system of AC2.
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The first ten rules in the proof system are standard rules for ⊤, initializa-
tion, cut and, left and right rules for conjunction, implication and universal
quantification. This is basically the sequent calculus formalization of the
∧,→,∀ fragment.

The next five rules are called structural rules. Structural rules are used in
sequent calculi to model the behavior of the hypotheses explicitly. There are
usually three types of structural rules: contraction, permutation, and weak-
ening. Our proof system includes the contraction rules (C-L1 and C-L2) for
the two non-linear contexts, and the permutation rules (P-L1, P-L2, and
P-L3) for the three contexts. There is no contraction rule for the context
∆ to prevent agents to use a use-once obligation, twice in the same proof.
Weakening is derivable and is not present as a separated rule. In this chap-
ter, to keep the proofs simple and readable, we hide all the occurrences
of permutation rules when presenting proofs. In our implementation (see
Chapter 3) on the other hand the permutation rules are implemented.

Remark 5 (Weakening) Weakening says that, if a certain proposition φ
can be derived from the assumptions Γ, then φ can also be derived from
Γ, ψ (for any ψ). Weakening is a derivable rule in our proofsystem. The
linear context ∆ allows weakening as well. The reason is that in the AC2

framework, while it must be prevented that agents use use-once obligations
twice, there is no motivation for preventing agents from consuming use-once
obligations, unnecessarily.

The next four rules are the implication left and right rules for the use-one
and use-many obligations. They add and remove actions from the contexts
Γ2 and ∆. The final four rules, refine, owns-L and obs-act, do not occur in
the usual logical systems.

The obs-act rule links actions and policies. It removes the conclusion of
an action α, concl(a, α), from Γ1, and adds α to the non-linear context for
actions Γ2.

In the conclusion of the refine rule, the formula maySay(b, c,Γ1 ) is used
as an abbreviation for list of policies maySay(b, c, φ) where φ in Γ1. The
action contexts, in the premise are empty, because we don’t allow local facts
to appear in policies for other agents unless they can be said to other agents.
In our logic, as mentioned in Section 2.3, if an agent can derive a certain
policy, it does not necessarily mean that it can communicate that policy to
other agent. The presence of the free contexts Γ′, Γ2 and ∆ is just to allow
for weakening, which would not be a derivable rule otherwise.

The owns-L rule has the same structure as falsity-left in a standard
sequent calculus. Although we do not include a separate symbol for falsity
in our grammar, the formula owns(a, d) or ∀a, d.owns(a, d) behaves much
like falsity, as it allows to derive all policies. Garg and Pfenning do not
include falsity in their authorization logic, arguing that it is unnecessary
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and that it would only yield misleading policies [38]. In our setting on the
other hand, a type of falsity (ownership of data) is present - owns(a, d)
allows to derive all policies about d - which we use to model discretionary
policies - Falsity does not create any fundamental problems in our setting.

For the owns-L rule we would need to define data aff(φ) for each policy
φ. Set-theory would be required to define data aff for compound poli-
cies, which is cumbersome (For instance data aff(φ ∧ ψ) ⊆

(

data aff(φ) ∩
data aff(ψ)

)

would have to hold.) Fortunately, the owns-L rule can be
restricted to atomic policies, provided we add the rule owns-maysay. It
can be shown that the proof system obtained in this way is sound and
complete with respect to the one without owns-maysay: Soundness follows
since, owns-maysay is provable using cut, the general form of owns-L and
weakening. Completeness can be shown by proving (the general) owns-L,
by case-analysis over φ. If φ is atomic, then the restricted form of owns-L
is applicable. If φ is of the form maySay(b, c, ψ), then φ can be stripped
using owns-maysay and refine. If φ is of another compound form, then
φ can be stripped using other rules. In owns-maysay, the formula on the
right side of the entailment relation ⊢a is restricted to formulas of the form
maySay(b, c, .) to satisfy the sub-formula property, which is important for
proof finding.

2.4.3 Properties and implementation

We refer the reader to Chapter 3 for technical details about the proof system.
In Chapter 3 we show the implementation of a proof checker, using the
type-checker Twelf (in Section 3.2), we show a cut-elimination theorem (in
Section 3.3.1), which implies that our logic is consistent, and semi-decidable,
and we show the implementation of a proof finder, using the theorem prover
Prolog (in Section 3.3.2).

2.5 Scenario

In this section, to illustrate our approach, we give the details of a particular
scenario: Employees of a consultancy firm exchange documents and policies
from customers.

2.5.1 General setting

At R&D, a research and consultancy firm, employees work regularly with
confidential data from customers. The firm and the employees of the firm
are trusted to treat the data with care, and to protect data from illegitimate
access.

The firm stores and processes a large amount of files produced or acquired
during projects for customers. Customers specify how their data can be used:
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They specify usage policies about how related documents can be used, and
who should have access. Typically, customers allow access to their data only
on a need-to-know basis, and they require data to be accessed in some secure
way. In addition to these usage policies, the firm may specify additional
policies, for example to avoid conflict of interests.

R&D has offices located at various sites, and each site has a storage for
files. For example, at one site, with 300 employees, the storage contains 1.5
million files, in about 120.000 folders. More than half of the employees have
administrative rights, i.e. they manage who may access files or folders. For
example, a project folder is maintained and managed by a project manager
who decides which employees should be granted access to the project folder.
Subfolders of the project folder are used to group data, under a different
access policy. For example, in each project folder there is often a folder with
evaluations of individual employees, regarding the project. This subfolder is
only accessible to management. It is safe to say that the filesystem contains
no top-secret data, nor public data: Top-secret data, like documents from
banks, require special care and clearance, and are stored on designated sys-
tems. Public data, like finished surveys and reports with public information,
are stored in a kind of internal library accessible to everyone in the firm, or
even the public.

In the rest of this section we assume that R&D (internally) audits the
compliance of employees, by using AC2, instead of using a more traditional
access control mechanism. Employees use simple terminals (computers or
laptops) to access the file storage. We assume that all access to the file
storage is monitored and that employees can not bypass this monitoring.
That auditors check the compliance of employees to the various usage policies
by checking who accessed the file storage for which files and when. And we
assume that employees use digitally signed emails to communicate policies
to each other. It is not necessary for the auditors to know exactly which
policies are being emailed by employees, because (as in Figure 3) when a
policy is used by an agent, the auditors will find out about it during audits.

2.5.2 Examples

In this section we outline the features of AC2 in a few sample runs. We
give four different examples of policies and proofs. We highlight the use of
administrative policies and the logging device. To represent the users of the
system we use the fictional employees Alice (a), Bob (b) and Carol (c). The
data that needs protection are a set of documents d1, d2, d3 etc. We use x
to denote an agent variable.

The grammar in this scenario contains the scenario-specific predicates
mayRead(), mayWrite() and isUsingV4 (), The first two are permissions for
agents to read and write data, while the third is a predicate about the kind
of terminal an agent is using. If agents are using the right client software,
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then their logging devices will certify this predicate.
The function data aff() for the permissions is defined by

data aff(mayRead(a, d1 )) = {d1}, and

data aff(mayWrite(a, d1 )) = {d1}.

The proof obligation and the conclusion derivation function are as reported
in Section 2.3, and additionally for the actions read() and write() the proof
obligations are mayRead() and mayWrite(), respectively.

Now, a typical work flow is as follows: A customer gives a consultancy
or research assignment to the firm. A contract is signed, containing, among
other things, informal usage policies for the data related to the project. The
account manager delegates the project to a project manager. The project
manager must ensure that the usage policies specified in the contract are
not violated.

The size of the file storage, and the number of different usage policies
and documents, makes a centralized approach to policy administration cum-
bersome. Project managers would always be requesting new authorizations
for their project members to the central authority. By giving project man-
agers administrative rights over documents and folders, they can work more
autonomously (avoiding the administrative bottleneck of a central authority
). Let us give an example.

Example 3 (Administrative policies) Alice is responsible for the
authorizations regarding the documents in the folder for project PR. She
must authorize other employees, to get the work done, while observing the
firm’s and the customer’s policy. Technically, Alice is the owner of data in
PR because she created (introduced) the files onto the filesystem. She has
logged the following action:

act1 : create(a, d1 ).

Alice can now derive owns(a, d1 ), but also any other policy about d1.
Evidence of the action act1 gives Alice the authority to authorize other
employees for the file d1.

Bob works on a project PR. Alice sends him the authorization to
read d1. She can derive: maySay(a, b,mayRead(b, d1 )). This policy is an
administrative policy for Alice, which justifies the action:

act2 : comm(a, b,mayRead(b, d1 )).

For Bob this is a justification for reading the document d1, so he logs
Alice’s communication for later. Now Bob reads the document d1:

act3 : read(b, d1 ).
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Suppose the firm’s auditor has observed Bob’s action act3. The auditor
asks Bob to justify it. Bob supplies the following proof:

[mayRead(b, d1 )]; ν; ν ⊢b mayRead(b, d1 )
I

ν; [comm(a, b,mayRead(b, d1 ))]; ν ⊢b mayRead(b, d1 )
obs-act

Since Bob uses his log of action act2 the auditor finds evidence of the
action, and subsequently asks Alice to justify act2. Her justification depends
on her log of the action act1. Alice must show that she can derive the
maySay(a, c,mayRead(c, d1 )):

data aff(mayRead(a, d1 )) = {d1}

[owns(a, d1 )]; ν; ν ⊢a mayRead(b, d1 )
owns-L

[maySay(a, b, owns(a, d1 ))]; ν; ν ⊢a maySay(a, b,mayRead(b, d1 ))
refine

[owns(a, d1 )]; ν; ν ⊢a maySay(a, b,mayRead(b, d1 ))
owns-maysay

ν; [create(a, d1 )]; ν ⊢a maySay(a, b,mayRead(b, d1 ))
obs-act

Alice’s justification proof for act2 illustrates a key rule of the AC2 proof
system (owns-L). The proof refers to action act1.

Formally, the auditor could ask Alice to justify act1, but the justification
proof is trivial. (The proof obligation for Alice for the action create() is
the policy ⊤, and a proof of ⊤ is simply the proof rule ⊤R.) The auditor
may want to review the type of document created (and thus owned) by
Alice, its contents, and investigate whether copyrights or other agreements
are applicable. The details of such a review are out of the scope of this
thesis (see Section 2.3.4).

AC2 allows refinement of administrative policies. Basically, this means
that if users have the authorization to send policies to other users, then they
may also send stricter policies. Let us give an example.

Example 4 (Administrative Refinement) Suppose Bob is authorized
to authorize Carol to read document d2. Suppose he receives the policy:
maySay(b, c,mayRead(c, d2 )), from another project manager, for this
reason. The policy allows Bob to say the policy mayRead(c, d2 ) to Carol.
But Bob wants to add an additional condition, to ensure that Carol uses
the version 4 terminal: isUsingV4 (c), for security reasons for example. So
Bob sends Carol a refined policy:

act4 : comm(b, c, isUsingV4 (c) → mayRead(c, d2 )).

The justification proof for act3 relies on the fact that,

⊢ mayRead(c, d2 ) → (isUsingV4 (c) → mayRead(c, d2 )),

holds, i.e. it is a tautology. In our framework this tautology entails that also

maySay(b, c,mayRead(c, d2 )) → maySay(b, c, isUsingV4 (c) → mayRead(c, d2 )),
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holds (by the refine rule). Bob can derive the authorization to communicate
a refined policy.

Let us see how Carol can use the policy. Carol is not always using the
right version of the client. Carol is a researcher who also uses another type
of terminal for research work. Carol, when she accesses d2,

act5 : read(c, d2 ),

she logs her action together with the (favorable) fact that she is using
the right version. Her log contains the action of reading d2 as follows:

〈act5, isUsingV4 (c), ν〉.

Later, Carol can use the log entry of act3, together with the log entry of
act4 to prove (to an auditor) that she was allowed to read d2:

[isUsingV4 (c)]; [act3]; ν ⊢c mayRead(c, d2 ).

The work at the firm is dynamic. It happens frequently that authoriza-
tions, for accessing documents, are outdated. The auditing approach of AC2

however ensures that, despite wrong or outdated authorizations consultants
can continue their work without delay. We give an example.

Example 5 (Availability) Alice has given Bob the authorization to read
documents of the project PR, like in Example 3. On Friday, Bob finishes
his work on document d1, which needs to be delivered to the customer by
Monday. Unexpectedly, he decides to have the researcher Carol review some
charts in the document over the weekend, because Carol is an expert at this.
Carol has not been authorized by Alice to read d1. Unfortunately, Alice
has already left the office. Bob knows Alice well and is sure she will agree.
Bob takes the responsibility of any sanctions, by authorizing Carol himself.
Carol subsequently reads the document d1:

act6 : comm(b, c,mayRead(c, d1 )).
act7 : read(c, d1 ).

At this point Carol can justify her action, by referring to the authoriza-
tion sent by Bob. Bob however did not have the authorization to authorize
Carol. The action act6 is not (yet) in compliance with the firm’s policies.
He writes Alice an email about this, asking her (a-posteriori) authorization.
When Alice comes back to office, she checks her emails and finds Bob’s au-
thorization request waiting. Alice can derive, from owns(a, d1 ), the policy:
maySay(a, b,maySay(b, c,mayRead(c, d1 ))), which is the justification for
the following communication:

act8 : comm(a, b,maySay(b, c,mayRead(c, d1 ))).
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The latter example highlights the flexibility of the audit-based approach
in combination with administrative policies. With a file system of thousands
of files and different authorizations and hundreds of employees and changing
projects, it is common for authorizations to be outdated or simply wrong.
The AC2 framework allows consultants to continue their work without delay.
Policies can be supplied on demand.

Suppose the firm’s auditor asks Bob for a justification for act6, Bob can
use his log of [act8]. Bob’s justification proof for act6 is as follows:

[maySay(b, c,mayRead(c, d1 )]; ν; ν ⊢b maySay(b, c,mayRead(c, d1 )))
I

ν; [comm(a, b,maySay(b, c,mayRead(c, d1 )))]; ν ⊢b maySay(b, c,mayRead(c, d1 ))
obs-act

The auditor, when checking Bob’s justification proof for act6, finds that
the proof relies on Bob’s log of Alice’s action act8. In turn the auditor might
ask Alice to account for action act8. She can use act1 (create(a, d1 )) to
derive a justification proof. The proof is similar to the justification proof
shown in Example 3, but it uses refinement twice. We omit the names of
rules for reasons of space. From top down, the steps are owns-L, refine,
refine, owns-maysay, owns-maysay, obs-act.:

data aff(mayRead(c, d1 )) = {d1}

[owns(a, d1 )]; ν; ν ⊢a mayRead(c, d1 )

[maySay(b, c, owns(a, d1 ))]; ν; ν ⊢a maySay(b, c,mayRead(c, d1 ))

[maySay(a, b,maySay(b, c, owns(a, d1 )))]; ν; ν ⊢a maySay(a, b,maySay(b, c,mayRead(c, d1 )))

[maySay(b, c, owns(a, d1 ))]; ν; ν ⊢a maySay(a, b,maySay(b, c,mayRead(c, d1 )))

[owns(a, d1 )]; ν; ν ⊢a maySay(a, b,maySay(b, c,mayRead(c, d1 )))

ν; [create(a, d1 )]; ν ⊢a maySay(a, b,maySay(b, c,mayRead(c, d1 )))

Use-once obligations can be used to enforce procedures, demanding that
users perform a certain action before or after performing another. We give
an example of use-once obligations.

Example 6 (Use-once obligations) Alice decides to give Bob adminis-
trative rights, in case he needs another review at a late hour. The firm’s
procedures however require that she can provide a list of employees who have
had access to the documents. She wants to receive a short email from Bob,
explaining the circumstances, for each time Bob gives access to another em-
ployee. She issues the following policy:

φ = notify(a)!→ ∀x. maySay(b, x ,mayRead(x , d1 )).

Alice’s action is:

act8 : comm(a, b, φ).

At a later time during the project, Bob needs Carol’s help again. He
notifies Alice, and keeps the evidence of this for later by logging the action,
and he authorizes Carol:
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act9 : notify(a).
act10 : comm(b, c,mayRead(c, d1 )).

and he logs his action with a reference to the use-once obligation he
is using up. His log contains: 〈act9, ν, ν〉 and 〈act10, ν, act9〉.

When the auditor asks Bob for a justification, Bob can prove:

ν; [act8]; [act9] ⊢b maySay(b, c,mayRead(c, d1 )).

Bob cannot authorize anyone without notifying Alice because the logging de-
vice does not permit him to point twice to the same message. Basically, the
separated linear context used in the proof system prevents him from complet-
ing a second justification proof. Alice can be sure that she gets an email each
time another employee gets access to a project document.

An important assumption in AC2 is that auditors can observe the critical
actions. In the examples of this section we assume that the auditor only
audits access the file storages. Suppose for the sake of example that Bob can
also attach documents to emails, and send them to people outside the firm.
We introduce an action email(), with parameters for the sender, receiver,
and the document that is attached. This type of action is not audited by
the firm’s auditor.

Example 7 (Undetected action) Bob wants to send the document d3 to
Carol, who now works for a new employer at a different firm. For example
Bob might send an email with the document d3 attached, to Carol, who
receives and reads the document d3. Let us go over the actions.

act11 : comm(a, b,mayRead(b, d3 )).
act12 : read(b, d3 ).
act13 : email(b, c, d3 ).
External action: read(c, d3 ).

The auditor only observes Bob’s action act12. Bob can justify this
action by using evidence of the communication act11, in case of an audit.
Bob’s email, and Carol’s action outside the firm are not observed by the
auditor.

The firm’s auditor audits only the access to the file storage, and does not
observe the illegal action act13 performed by Bob, nor the external action
by Carol. To solve this problem, the firm’s security officer should extend
the audit trail to include also such emails, or relay on the auditor of Carol’s
new firm, to detect and report the reading of d3 by Carol.
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2.6 Related Work

Our work is related to a number of different areas in access control research.
We discuss the different areas below.

2.6.1 Audit logs

Logging and auditing have always been considered central in security, and
in particular central to a successful practical implementation of access con-
trol [76]. Jajodia et al. discuss explicit requirements for logging and auditing
user actions on a database [47]. Logging and auditing is usually performed,
not as a replacement of, but in addition to an (a-priori) access control sys-
tem. In addition sometimes the access control system itself is audited, for
flaws or errors. An audit of the access control mechanism can be sufficient
when it is certain that the mechanism can not be turned off between the
audits. In our framework we focus on auditing individual actions, and in
principle we can assume that the a-priori access control system is turned off
completely, providing only basic authentication of users. Audits are some-
times used to observe unauthorized access, or the bypassing of access control
mechanisms [77]. Observing such misbehavior is a general problem, which
plays a role also in our setting. In our framework it is particularly important
that the audit trails can not be tampered with by users, and that it is hard
for users to prevent that crucial actions are being registered in the audit
trail [77].

2.6.2 Overriding

Rissanen et al. propose a method for overriding in the Privilege Calculus,
a type of access control system [74]. They focus on how to find suitable
auditors in a hierarchy of auditors, to justify each override. In our framework
on the other hand, we focus on the form of the justifications and we do
not assume any hierarchy of auditors. Rissanen et al. list a number of
reasons to use a more flexible mechanism than the traditional a-priori access
control systems. Their main motivation is that emergency situations can
not be encoded in policies. We take a different approach by providing a
way (through the use of administrative policies) to change the authorization
of users to adapt to the new situation. In our framework, for example, a
user can be authorized to give authorizations to other users, a-posteriori,
for example for actions during an emergency situation. Also in a medical
setting, Longstaff et al. [64] give a high-level description (a UML model) of
a medical information system with the possibility to override access control
decisions. They focus on the conditions under which an override is justified.
In a different setting, Shmatikov and Talcott audit users to discover the
violation of DRM licenses. They use a reputation system to discourage
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bad behavior, and encourage good behavior [81]. In our framework we do
not make assumptions about specific sanctions imposed by auditors, but in
certain settings it may be an interesting future possibility to combine our
framework with the reputation system of Shmatikov.

2.6.3 Logics in access control

In our framework we use on purpose a simple policy language based on
first-order logic, where first-order quantification allows to express groups
of objects and subjects. For the sake of simplicity we did not go into the
details of all practically useful constructs, such as constructs regarding time,
groups of subjects, or objects. It has been shown, however, that first-order
logic supports most access control policies [40]. Unfortunately, first-order
quantification is only semidecidable, which means that there is a procedure
that finds all the proofs of statements, but this procedure may not terminate
when no proof exists. The authors argue that undecidability is not a severe
problem in the setting of PCA [12], because agents must find proofs, not
the PCA reference monitor. An analysis of the expressivity of first-order
logics was presented by Halpern and Weismann who discuss in particular
the practical use of certain decidable subsets of first-order logics for access
control [40]. A number of access control frameworks are based on Datalog,
e.g., Delegation Logic [59], the RT framework [62] and Binder [30]. It has
been argued however that Datalog has severe limitations and that a more
expressive language should be used instead [61]. Datalog with constraints
has been used in the Cassandra system to implement an Electronic Health
Record system. Theoretically, the policy language used in the Cassandra
system is undecidable [18]. For a more lengthy discussion of the different
aspects of logic-based access control systems we refer the reader to a survey
by Abadi [9].

Many systems use the says construct, which models the communication
of a (security) statement between users. In these proposals, the receiver,
before concluding that the communicated statement is true, must check some
side-condition, such as whether the sender is trusted, or an authority about
such a statement. This side-condition is absent in our framework, because
in our framework the agent who sends the policy remains responsible for it.
If a policy is used to justify an action, auditors may find out about it, and
they may ask the original sender of the policy for a justification.

2.6.4 Proof checking and proof systems for access control

The proof system proposed here differs from normal first order logics in the
use of the linear context to model use-once obligations, the refinement rule
and the rule that allows any policy to follow from the owns predicate. We do
not use all the linear operators and logical rules, because many constructions
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do not yield useful policies. Independently, Garg et al. [37] have presented
a similar system recently (here use-once obligations are referred to as con-
sumable credentials). They have claimed to be the first to use linear logic
in an access control setting. Differently from us, they use all the operators
and logical rules of linear logic, but they conjecture that it is sufficient to
use some subset of linear logic (like we do).

The cut-elimination theorem, proven for our logic (see Chapter 3), shows
that the logic is well-behaved: it is semi-decidable and consistent. Inde-
pendently, the same theorem, for a different authorization logic, was used
recently by Garg and Pfenning [38]. Their logic is a constructive sequent
calculus (like ours) and they prove that the cut-rule is admissible (like we
do). Garg and Pfenning refer to this as the non-interference property of
the logic. They discuss in detail the precise consequences of cut-elimination
with respect to access control policies.

BLF [90] is an implementation of a Proof-Carrying-Code framework that
uses both Binder and Twelf. In this framework, developers of a program
include a proof that the program is safe, while consumers can check the proof
to get confidence about the program. This is based on two ideas: First, that
checking the correctness of a proof is relatively easy, compared to finding
one. Second, that finding the proof, that a program is safe, is easier for
the developer of the program than for arbitrary consumers of the program.
Like in our framework, the proofs are written and checked using Twelf. In
BLF, the proofs for complex programs can become lengthy. To solve this,
an alternative procedure was proposed, using only hints from which the full
proof can be derived, instead of giving the full proof. Such a variation could
be a possibility also for our framework.

More related to our auditing by means of proofs, Appel and Felten [12]
propose the Proof-Carrying Authentication framework (PCA), also imple-
mented in Twelf. Their system is implemented as an access control system
for web servers. Differently from our work, PCA’s language is based on a
higher order logic that allows quantification over predicates. The disadvan-
tage of using higher-order logic is that proof search is in general undecidable
and that properties like consistency must be proven separately for individ-
ual settings. In our case, semi-decidability and consistency hold for all the
different settings.

2.6.5 Access control

A number of access control systems use a policy language based on XML to
express access control policies [66, 53, 89]. We do not use an explicit XML
syntax here because we are interested in the formal properties of our logic,
which are more easily shown when using logical formulas and logics.

XACML [66] is a type of attribute-based access control system. An
XACML policy consists of a list of rules. Each rule is a tuple of action,
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subject, object, condition and an effect. The latter can be either permit, deny,
or not applicable, and behaves like an intermediate decision in the sense that
this value may or may not be, for example when overruled by another part
of the policy, the final outcome of the decision. In our framework overruling
a positive decision is not possible: when a policy allows an action then this is
always final. Also, if no policy applies access is always denied. The XACML
decision vfalues negation and not applicable hence coincide in our framework.
The first three elements of the XACML tuple are in our logic contained in
the action expressions. Conditions are expressed using logical implication
→. The maySay predicate can not yet be translated to an XACML policy,
but apparently the new version of XACML should allow the expression of
administrative policy.

XrML [89], a rights language designed for DRM, is similar to XACML,
except that in XrML some form of administrative policy is possible; an
XrML license may contain a special flag allowing the further distribution
of the same license. The maySay()-construct in AC2, and the possibility of
nesting of the maySay()-construct, is basically a refined form of the XrML
distribution flag: in AC2 one can also specify all the sender and receiver
pairs, in the maySay predicate, along a delegation chain.

Bandman et al. define a type of cascaded administrative policies, using
regular expressions to constrain the users that can receive them [16]. The
maySay() construct allows to express similar policies, although we use first-
order predicates instead of regular expressions.

In AC2 we distinguish between conditions and obligations, that can be
logged by agents. This use of obligations was inspired by Sandhu and Park’s
UCON model [68], in which the decision is modeled as a reference monitor
that checks the three components: ACL, Conditions and Obligations. Dif-
ferently than in the UCON model, we do not assume a security monitor, to
check that these conditions are valid, but a logging device to certify (or sign)
conditions. UCON’s post- and pre-obligations are supported in our frame-
work, but ongoing obligations would require a special construction. Obliga-
tions are used with a different meaning in E-P3P [53] and in XACML [66].
In these frameworks, obligations are call-back functions that are executed
by the access control mechanism at the time a request is evaluated. In our
framework there is no central security monitor that evaluates access requests,
but obligations are actions to be performed by the agents requesting access.

2.7 Conclusions

In this chapter we have described a framework called Audit-based Com-
pliance Control (AC2). AC2 is targeted at dynamic collaborative environ-
ments, such as consultancy firms, or hospitals, where a small group of users
exchange, modify and refine a large number of documents and policies.
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In our framework we assume that no security monitor is present to pre-
vent unauthorized actions, but that critical actions are monitored and that
users can be asked to justify their actions, a-posteriori. Our framework uses
a simple, but expressive, policy language based on first-order predicate logic,
and extended with an owns predicate and a maySay predicate. To reason
about policies AC2 uses a formal proof system which can be implemented
straightforwardly (see Chapter 3). To show how our framework can be used
in practice we have discussed a common scenario: employees of a consultancy
firm, processing various confidential documents. In the following chapters
we show how our framework can be used in other types of dynamic collab-
orative environments. In particular, for the protection of health records in
a hospital (Chapter 4, and for the protection of customer data across en-
terprises (Chapter 5). We implemented our logic by building a proof finder
(using Prolog) and a proof checker (using Twelf). We refer to Chapter 3 for
a description of both tools.

To the best of our knowledge, the framework proposed here is the first
to describe a logic for (administrative) policies combined with a-posteriori
compliance checks of performed actions. Checking authorizations of users
after the access yields a flexible system, and avoids the usual costs of un-
availability due to flawed or outdated policies.

A crucial requirement to deploy our framework successfully is that the
actions of the users can be monitored, and that the users performing these
actions can be held accountable. This may exclude certain settings, such as
the internet, where monitoring user actions is infeasible and holding users ac-
countable is even harder. In other settings these requirements are not unrea-
sonable. Recent laws and legislation demand that enterprises and hospitals
account for the disclosure of confidential documents [84, 85]. Tracing which
employees have accessed data, and demanding justifications afterwards, is a
flexible way of ensuring that procedures are being followed, without affecting
the availability of data. High availability discourages bad security practices.
Recall the example in the introduction. If the senior Charlie was not allowed
to authorize an employee to review the charts, he would have been tempted
to bypass the security measures, say by sending the file conspicuously by
email, in order to get the work done quickly.
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Chapter 3
Proof Finding and Proof
Checking

3.1 Introduction

In the previous chapter we have introduced the AC2 framework. In this
chapter we focus on the technical details of the AC2 proof system and show
how to find and check justification proofs automatically.

In AC2 agents perform (and log) actions, while auditors may audit the
actions of the agents a-posteriori, i.e. after their occurrence. If an auditor
asks the agent to justify a particular action, then the agent must present
a justification proof. The justification proof consists of two parts: 1) evi-
dence (log-entries, for example of communications), and 2) a logical proof
(a derivation of a certain permission, for example for sending a policy). The
auditor has to check two things: 1) that the evidence is sound, that is, that
the log entries are genuine 2) that the proof is correct. If the proof is correct,
and the evidence is sound, then we say that the agent is accountable for that
action, i. e. that the agent was allowed to perform the action. Recalling the
definition of action accountability (Definition 5): An agent a accounts for
an action act if it provides a valid proof of Γ1,Γ2,∆ ⊢a pro(act, a), where
pro(act, a) is the proof obligation for action act.

In the AC2 framework the agents are responsible for keeping evidence of
facts and past actions, and for finding justification proofs for their actions.
This is very different from conventional access control where agents simply
send requests and let the reference monitor decide whether the request is
allowed or not. Recall that the AC2 justifications proofs are proofs of propo-
sitions of the form Γ1; Γ2 ⊢a φ, where φ = pro(α, a) the proof obligation
for an action α. In this chapter, because finding the justification proofs
manually can be laborious, we present a prototype of an automated proof
finder, called PPF. The proof finder basically works as follows: Given a set
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of evidence (a list of logged actions), an agent name a and a predicate φ,
it tries to find a proof of φ, a proof of the form Γ1; Γ2;∆ ⊢a φ, where the
logical contexts are formed by the evidence supplied by the agent. If it finds
a proof it prints the proof to allow the agent to store it, or to send it to the
auditor. This is also slightly different from most proof finders (also known as
theorem provers), which answer yes or no, without printing a formal proof.

The auditor, on the other hand, has to check the proofs provided by the
agents. Manual proof checking is both error-prone and slow. Therefore, the
second contribution of this chapter, is a proof checker for the AC2 justifica-
tion proofs, called TPC. Basically, given a proof of Γ1; Γ2;∆ ⊢a φ, the proof
checker checks whether the proof is correct or not.

Let us show outline how the proof checker and the proof finder work
together in the AC2 framework. Suppose that an agent a has performed an

For example, for α = comm(a, b, φ),
pro(α, a) = φ = maySay(a, b,mayRead(b, d1 ))

Twelf Proof Checker
(TPC)

Prolog Proof Finder
(PPF)

Try to solve
entail(a, gamma, phi, proof)

where gamma are Prolog facts
(for each formula in γ), and
proof is an output variable.

Check that π and γ ⊢a φ

have the same type.

Auditing
authority

5: π is a proof of γ ⊢a φ?

6: OK!

Log excerpt γ

2: Is there a proof of γ ⊢a φ?

3: Found π. a

L
og

1: Justify α,
prove φ.

4: Yes, here is γ, and π
a proof of γ ⊢a φ.

Figure 6: Use of the proof checker (TPC) and the proof finder (PPF) in the
event of an audit.

action α and that the auditing authority wants a to justify it. The steps of
such an audit are represented in Figure 6. First, (1) agent a is audited for
action α. There agent a computes pro(α, a) = φ, and selects an excerpt γ
of its log and (2) tries to find a proof of γ ⊢a φ with the proof finder (PPF).
Then (3) the proof π and the excerpt γ are sent to the auditor for checking
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(4) and finally, (5) the auditor checks that π is indeed a proof of γ ⊢a φ by
using the proof checker (TPC) (6).

The proof finder and the proof checker use the same syntax for proofs,
but they are implemented in completely different ways:

• The proof checker is implemented using Twelf, a type-checker. The
implementation of the 20 inference rules in Twelf consists of about 100
lines of code.

• The proof finder, on the other hand, is implemented using Prolog. It
prints proofs in Twelf syntax though (every proof is a type declara-
tion). Besides a representation of the inference rules, it contains extra
modules for the generation of the proof in a format appropriate for the
proof checker. There are about 400 lines of Prolog code.

There are two reasons for this difference: Proof finding is difficult (only
semi-decidable) for the AC2 proof system. This is a direct consequence of
the expressiveness of the AC2 policy language, and is a common problem for
(fragments of) first-order predicate logic. We cannot use standard first-order
logic theorem provers, because they do not take into account the special
connectives maySay(), owns() and the associated rules. We implement a
proof finder using the resolution procedure of Prolog. To allow this to work
we first prove a technical result about the AC2 proof system in Section 3.3.1:
a cut-elimination theorem. Cut-elimination implies consistency, and semi-
decidability, and it allows us to implement the proof finder.

Proof checking on the other hand is easier than proof finding. At the
same time, we should stress that the correctness of proof checking is crucial
in the AC2 audit procedure: If the auditor uses a proof checker that is
flawed, then agents would be able to perform illegitimate actions, and get
away with it. The question arises of how to be sure that the proof checker
is correct (a version of the question Quis custodiat ipsos custodes). Since it
is not possible to try out all the proofs (to show that bad ones are rejected
and good once accepted), we can only verify the proof checker manually, by
inspecting its code. In the field of software verification, the lines of code
that have to be verified by hand (before one can trust it), are referred to as
the trusted code base.

In this chapter we implement the proof checker by using the logical
framework Twelf [73]. Twelf uses the propositions-as-types correspondence,
also called the Curry-Howard isomorphism. Proof checking in Twelf thus
reduces to type-checking, which is a simple procedure (compared to proof
finding).

Twelf allows to keep the trusted code base to a minimum, thereby facili-
tating manual inspection. Indeed, our proof checker, introduced in the next
section, consists of less than a hundred type definitions, and it is straight-
forward to verify (manually) that they are precise translations of the AC2
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grammar and the derivation rules of the AC2 proof system. The syntax of
proofs output by the proof finder, and checked by the proof checker is shown
below.

thm: (entail a

nil

(cons (creates a d1) nil)

nil

(maysay a b (mayread b d1)))=

(obs_act

(owns_maysay (refine

(owns_left data_mayread (map_cons map_nil)(append_cons append_nil))

(map_cons map_nil)

(append_cons append_nil)))

concl_creates).

This sample shows the syntax of a proof by agent a of the administrative
policy maySay(a, b,mayRead(b, d1 )), using the fact that she created the
data. The corresponding proof in sequent calculus notation is given below.
In Twelf syntax the proposition (the final term on the bottom of the proof
below) is the term before the = sign, and its proof is written after the ’=’
sign.

data aff(mayRead(a, d1 )) = {d1}

[owns(a, d1 )]; ν; ν ⊢a mayRead(b, d1 )
owns-L

[maySay(a, c,owns(a, d1 ))]; ν; ν ⊢a maySay(a, b,mayRead(b, d1 ))
refine

[owns(a, d1 )]; ν; ν ⊢a maySay(a, b,mayRead(b, d1 ))
owns-maysay

ν; [create(a, d1 )]; ν ⊢a maySay(a, b,mayRead(b, d1 ))
obs-act

3.2 Proof Checking

Proof checking is implemented using Twelf. Twelf, an implementation of
the Edinburgh Logical Framework [70], was designed for experimenting with
deductive systems. Twelf has been used to implement a variety of logical sys-
tems and programming languages [73]. Twelf provides a convenient syntax
for type definitions, it provides a type checker, and it uses a short notation
for proofs, which makes it convenient to use in settings where proofs are gen-
erated and checked remotely [12, 90, 65], such as in our setting by auditing
authorities. In this section we show the code of the proof checker, and the
syntax of the justification proofs that can be checked by the proof checker.

3.2.1 Twelf code

Our proof checker consists of Twelf’s type-checker and a list of type defini-
tions, called signature that represents the grammar and proof rules of AC2.
Let us introduce this signature, before showing how our proof checker can
be used in a specific scenario. Our signature is based on the LF encoding
for first-order logic [41]. The basic types are shown in Figure 7. The main
types are a type obj, for data and agents, and a type pred for predicates
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kind

type

obj pred

agent data policy action

otm ptm

Figure 7: Type diagram for the implementation in Twelf.

and actions. They are instances of Twelf’s meta-type type. In the literature
pred and obj are sometimes refered to as individuals and propositions [41].
We define policies and actions as different subtypes of pred, and agents and
data as different subtypes of obj.

obj: type.

pred: type.

policy: pred.

action: pred.

agent: obj.

data: obj.

To declare the (sub)type of agents, data, or atomic predicates of the policy
language type constructors are used. The type constructors otm, for obj, and
ptm, for pred, are declared as follows.

otm: obj -> type.

ptm: pred -> type.

The meta-logic function -> used here goes from type to type (see Figure 7).
Let us give one example of the use of the type constructors. To declare that
the name john is of type agent, one declares john: otm agent.

The basic atomic predicates in AC2 are owns() and ⊤ (written in the code
as true). The basic actions are create() and comm(). The connectives are
maySay(), →, ∧, and ∀ (for quantification over agents and data variables),
and !→, and ?→ for use-once-obligations and use-many-obligations. Their
types are defined below.
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true: ptm policy.

owns: otm agent -> otm data -> ptm policy.

comm: otm agent -> otm agent -> ptm policy -> ptm action.

creates: otm agent -> otm data -> ptm action.

maysay: otm agent -> otm agent -> ptm policy -> ptm policy.

imp: ptm policy -> ptm policy -> ptm policy.

forall: (otm T -> ptm policy) -> ptm policy.

and: ptm policy -> ptm policy -> ptm policy.

?imp: ptm action -> ptm policy -> ptm policy.

!imp: ptm action -> ptm policy -> ptm policy.

For instance, (owns a d) is the representation of the policy stating that agent
a owns the data d. The expression (owns d a) violates the type definitions
(Twelf will throw an error when encountering it). Agents and data are
both subtypes of obj, so a single quantifier forall with a variable type T

suffices. In Twelf variables are denoted with a capital letter, and their type
of variables can usually be omitted as Twelf infers it from how they are used.

Example 8 Suppose the policy grammar, in some scenario, includes per-
missions for reading and writing, the policy that the permission to write
implies the permission to read is written as follows:

(forall[a] (forall[d] (imp (maywrite a d) (mayread a d) ) ) )

The AC2 proof system is a sequent calculus. Sequents are lists of policies
(the first context) or lists of actions (the second and the third context). The
following lines declare types for lists, the empty list, and the list constructor.
The last two are the two basic axioms about lists.

list: pred -> type.

nil: list X.

cons: ptm X -> list X -> list X.

append: list X -> list X -> list X.

append_nil: append nil X X.

append_cons: (append (cons X XS) YS (cons X ZS)) <- (append XS YS ZS).

For example, (cons (owns a d) nil) is a list containing the policy
owns(a, d). Let us prove a simple proposition about a list.

Example 9 (Joining two lists) The list (cons p (cons q nil)) is the
same as appending the lists (cons p nil) and (cons q nil).

A proof is (append_cons append_nil), for example. We can verify the
proof by declaring a simple lemma:

p: ptm policy.

q: ptm policy.
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lem1:

(append (cons p nil) (cons q nil) (cons p (cons q nil)))

= append_cons append_nil.

If one type-checks this, Twelf accepts this as a lemma, and stores it under
the name lem1. In the process the Twelf type-checker checked that the type
of the proof term (after the = sign) and the type of the proposition (before
the = sign) are the same.

The propositions we are ultimately interested in are of the form
Γ1; Γ2;∆ ⊢a φ. Agents must provide auditors with justification proofs, which
are proofs of this kind of propositions. The entailment relation ⊢ is declared
as follows.

entail: otm agent -> list policy -> list action -> list action ->

ptm policy -> type.

Now we can define the types for the proof rules. We start with the basic
first-order logic rules.

true_r: entail A Gamma1 Gamma2 Delta true.

init: entail A (cons Phi Gamma1) Gammact2 Delta Phi.

cut: entail A Gamma1 Gammact2 Delta Phi ->

entail A (cons Phi Gamma1) Gamma2 Delta’ Chi ->

append Delta Delta’ Delta’’ ->

entail A Gamma1 Gamma2 Delta’’ Chi.

imp_l: entail A Gamma1 Gamma2 Delta Phi ->

entail A (cons Chi Gamma1) Gamma2 Delta’ Psi ->

append Delta Delta’ Delta’’ ->

entail A (cons (imp Phi Chi) Gamma1) Gamma2 Delta’’ Psi.

imp_r: entail A (cons Phi Gamma1) Gamma2 Delta Chi ->

entail A Gamma1 Gamma2 Delta (imp Phi Chi).

and_l1: entail A (cons Phi Gamma1) Gamma2 Delta Chi ->

entail A (cons (and Phi Psi) Gamma1) Gamma2 Delta Chi.

and_l2: entail A (cons Psi Gamma1) Gamma2 Delta Chi ->

entail A (cons (and Phi Psi) Gamma1) Gamma2 Delta Chi.

and_r: entail A Gamma1 Gamma2 Delta Phi ->

entail A Gamma1 Gamma2 Delta’ Chi ->

append Delta Delta’ Delta’’ ->

entail A Gamma1 Gamma2 Delta’’ (and Phi Chi).

forall_l:entail A (cons (Phi X) Gamma1) Gamma2 Delta Chi ->

entail A (cons (forall Phi) Gamma1) Gamma2 Delta Chi.

forall_r:entail A Gamma1 Gamma2 Delta (Phi X) ->

entail A Gamma1 Gamma2 Delta (forall Phi).

!imp_l: entail A (cons Phi Gamma1) Gamma2 Delta Psi ->

entail A (cons (!imp Act Phi) Gamma1) Gamma2

(cons Act Delta) Psi.

!imp_r: entail A Gamma1 Gamma2 (cons Act Delta) Psi ->

entail A Gamma1 Gamma2 Delta (!imp Act Psi).

?imp_l: entail A (cons Phi Gamma1) Gamma2 Delta Psi ->



50 Proof Finding and Proof Checking

entail A (cons (?imp Act Phi) Gamma1)

(cons Act Gamma2) Delta Psi.

?imp_r: entail A Gamma1 (cons Act Gamma2) Delta Psi ->

entail A Gamma1 Gamma2 Delta (!imp Act Psi).

The structural rules for contraction and permutation of formulae in the
sequents, are defined as follows. We write perm_l1, perm_l2 and perm_l3 for
the three permutation rules, and contr_l1, contr_l2 for the contraction of
the two non-linear contexts.

perm_l1: entail A Gamma1 Gamma2 Delta Phi ->

append L1 (cons X1 (cons X2 L2)) Gamma1 ->

append L1 (cons X2 (cons X1 L2)) Gamma1’->

entail A Gamma1’ Gamma2 Delta Phi.

perm_l2: entail A Gamma1 Gamma2 Delta Phi

append L1 (cons X1 (cons X2 L2)) Gamma2 ->

append L1 (cons X2 (cons X1 L2)) Gamma2’ ->

entail A Gamma1 Gamma2’ Delta Phi.

perm_l3: entail A Gamma1 Gamma2 Delta Phi

append L1 (cons X1 (cons X2 L2)) Delta ->

append L1 (cons X2 (cons X1 L2)) Delta’ ->

entail A Gamma1 Gamma2 Delta’ Phi.

contr_l1: entail A (cons Phi (cons Phi Gamma1)) Gamma2 Delta Psi ->

entail A (cons Phi Gamma1) Gamma2 Delta Psi.

contr_l2: entail A Gamma1 (cons Phi (cons Phi Gamma2)) Delta Psi ->

entail A Gamma1 (cons Phi Gamma2) Delta Psi.

We conclude by formalizing the proof rules obs-act, owns-L, refine and
owns-maysay.

obs_act: concl A Act Phi ->

entail A (cons Phi Gamma1) Gamma2 Delta Psi ->

entail A Gamma1 (cons Act Gamma2) Delta Psi.

refine: entail A G nil nil Psi ->

map G ([x] (maysay B C x)) Gs ->

append Gs W Gamma1 ->

entail A Gamma1 Gamma2 Delta (maysay B C Psi).

owns_l: (data_aff Phi Data) ->

map_o Data ([d] (owns A d)) Go ->

append Go W Gamma1 ->

entail A Gamma1 Gamma2 Delta Phi.

owns_maysay:

entail A (cons (maysay B C (owns A D)) Gamma) Gamma2 Delta

(maysay B C Psi) ->

entail A (cons (owns A D) Gamma) Gamma2 Delta

(maysay B C Psi).
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The rule obs-act uses the conclusion derivation function concl(). The type
of the conclusion derivation is defined by:

concl: tm action -> tm agent -> tm policy -> type.

Proofs of (concl A Act Phi) are either concl_comm, or concl_creates,
corresponding to the conclusions from communication and creation, respec-
tively.

concl_comm: concl (comm A B Phi) B Phi.

concl_creates: concl (creates A D) A (owns A D).

The refine rule requires the map function, which is defined by:

map: list T -> (ptm T -> ptm T1) -> list T1 -> type.

map_nil: map nil F nil.

map_cons: map B F L -> map (cons A B) F (cons (F A) L).

The owns-rule makes use of the function data aff . As mentioned in
Section 2.4, we can restrict data aff(φ) to atomic policies.

data_aff: ptm policy -> list_o data -> type.

data_aff_owns: data_aff (owns B D) (cons_o D nil_o).

For each additional atomic predicate needed in certain setting, for example
mayRead(), one additional definition is needed to define which data it affects.
In the definition of data aff list_o is a type for lists of data, which is
identical to the definition of list, except for the _o subfix and the type of
the list elements.

3.2.2 Scenario-specific code

For a given scenario the Twelf signature is extended with scenario-specific
predicates and actions. The extension consists of short and simple type
definitions, that do not affect the general properties of the logic. Consider
the example scenario described in the end of Chapter 2. The scenario-specific
definitions are as follows.

alice : otm agent.

bob : otm agent.

file : otm data.

reads : otm agent -> otm data -> ptm action.

writes : otm agent -> otm data -> ptm action.

mayread : otm agent -> otm data -> ptm policy.

maywrite : otm agent -> otm agent -> ptm policy.

isusingv4: otm agent -> ptm policy.

data_aff_mayread: data_aff (mayread B D) (cons_o D nil_o).

data_aff_maywrite: data_aff (maywrite B D) (cons_o D nil_o).
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Example 10 (Dynamic collaborative environment) We can now
check a basic proof. Suppose Alice creates a file file and she gives Bob a
policy that states that Bob can read it, if he is using version 4 of the reader
software isUsingV4 (Bob) → mayRead(Bob,File). Bob reads the file, and
logs this action together with the condition that he is using version 4 of the
document reader isUsingV4 (Bob). The auditor finds out about Bob reading
the file, and asks Bob to account for reading the file. Bob uses his log entry
of Alice’s communication to prove mayRead(Bob,File).

thm2: (entail bob

(cons (isusingv4 bob) nil)

(cons (comm alice bob (imp (isusingv4 bob)

(mayread bob file))) nil)

nil

(mayread bob file))=

(obs_act concl_comm (imp_l init init append_nil)).

The proof (right of the equality sign) type-checks with the proposition. Bob
has accounted for his action. The auditor has now found evidence of Alice’s
policy communication. The auditor asks Alice to account for it.

lemma2:

(entail alice

nil

(cons (creates alice file) nil)

nil

(maysay alice bob (imp (isusingv4 bob) (mayread bob file))))=

(obs_act concl_creates (owns_maysay (refine (imp_r (perm_g1_2

(owns_l data_aff_mayread

(map_cons_o map_nil_o) (append_cons append_nil)))) (map_cons map_nil)

(append_cons append_nil)))).

The proof of both lemma’s were output by the proof finder (see the next
section), and checked by Twelf.

Proofs that use many conditions and actions as evidence, require numer-
ous permutations. In our implementation of the proof checker, for the sake
of readability, we allow abbreviation of permutation steps using lemma’s.
For example, perm_g1_2 (used in the previous example, swaps the first and
the second element in the first context, and perm_g2_5 swaps the first and
the fifth element in the second context, and so forth.

3.3 Proof Finding

In the previous section we have proposed a proof checker for the AC2 proof
system, in this section we address proof finding in the AC2 proof system. In
this section we show that the cut-rule is redundant in the AC2 proof system,
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which implies consistency, and semi-decidability. The cut-free calculus is also
more suitable for mechanical (bottom-up) proof search. In Section 3.3.2 we
show an implementation of a proof finder for the AC2 proof system, written
in Prolog.

3.3.1 Cut-elimination

In this section we prove a cut-elimination theorem for the AC2 proof system,
which states that: If we can proof some lemma φ and prove a formula ψ
using this lemma, then the formula ψ can also be proven directly. Not having
this intuitive property would indicate an exotic logical system indeed. Cut-
elimination theorems, due to Gentzen [31], are considered a central issue
in the field of logics. A cut-elimination theorem exists for first-order logic
as well as for a number of other standard logical systems. In our case
consistency and semi-decidability follow from cut-elimination.

Below for the sake of readability, we only write the non-linear context Γ,
as the other two contexts are irrelevant for this proof. For the same reason,
in the sequel we ignore the left and right rules for ?→ and !→.

The cut-rule is as follows.

Γ ⊢a φ Γ, φ ⊢a ψ

Γ ⊢a ψ
cut

Here φ is called the cut-formula. It is is cut out of the premises.
The cut-rule does not satisfy the sub-formula property; the cut-formula,

φ, in the premise may be completely absent in the conclusion. A mechanical
proof finder would have to guess it. The sub-formula property is important
to be able to implement an efficient proof search.

Theorem 2 (Cut-elimination) Let the proof system with the cut-rule be
denoted with ⊢a and the proof system without the cut-rule be denoted ⊢+

a ,
then, for arbitrary Γ and φ,

Γ ⊢a φ ⇒ Γ ⊢+
a φ (3.1)

Proof 2 For proving the cut elimination theorem for our logic we follow
a standard approach [72]: We show by induction (over the length of the
formula to be proven) that proofs including a cut rule can be transformed
into proofs without this rule.

Our induction assumption states that, if we have a cut free proof D for
Γ ⊢a φ and a cut free proof E for Γ, φ ⊢a ψ then we also have a cut free
proof F for Γ ⊢a ψ. This induction assumption is applied if the cut formula
(φ) is simplified or if the cut formula stays the same and one of the proofs
is shortened (and the other proof is not lengthened).

Below, a formula is called principal in the rule, if the rule explicitly
introduces the formula (either left or right of the ⊢a). Furthermore, we
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will use the fact that any proof for Γ ⊢a φ can be weakened to a proof for
Γ, ψ ⊢a φ by using the same rules but simply adding ψ in each step.

The proof is by case-analysis over the last rule used in the proofs D and
E. For clarity we show a table with the cases for D and E. The table refers
to parts of the proof below, and pr. denotes principal.

D init(I) D owns-L φ not pr. in D φ pr. in D
E init(I) 1 2 2 2
E owns-L 1 3 5 4

φ not pr. in E 1 6 5 6
φ pr. in E 1 3 5 7

The rules init(I) and owns-L are the base-cases of the induction over the
length of the derivation, so they are done first. As mentioned we leave out
the rules concerning use once and use many obligations, !→ R, !→ L, ?→ R
and ?→ L, as well as the ⊤R rule, which amount to trivial cases below.

1. D ends in I. When D consist of a single init rule,

D :
Γ′, φ ⊢a φ

I

(i.e. Γ = Γ′, φ) then applying contraction to Γ′, φ, φ ⊢a ψ, which is
the conclusion of E, gives us the required sequence Γ′, φ ⊢a ψ. Thus E
followed by contraction is a cut-free proof for this sequent.

2. E ends in I. When E consists of a single init(I) rule and φ is used,

E :
Γ, ψ ⊢a ψ

I

then the cut-formula is ψ and a cut-free derivation of ψ is simply D.
Otherwise, if φ is not used,

E :
Γ′, ψ, φ ⊢a ψ

I

(i.e. Γ = Γ′, ψ), then a cut-free proof for the required sequent Γ′, ψ ⊢a ψ
is a single application of the init rule.

3. D ends in owns-L. When D consists of a single application of the
owns-L rule, then φ is atomic,

D :
Γ′, owns(a, d) ⊢a φ

owns-L

so if φ is principal in the last inference in E then this inference must
use rule init, covered in 2, or owns-maysay or owns-L. In the latter
two cases, one can simply contract the context to obtain the required
sequent. In case φ is not principal in E’s last step, then the induction
assumption for a smaller proof E is used, see case 6.
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4. E ends in owns-L. When E is owns-L and φ is used, then φ is an
owns() predicate.

E :
Γ, owns(a, d) ⊢a ψ

owns-L

There are no cases for φ principal in D’s last step except init and owns-
L, both treated in the cases 1 and 3. In case φ is not principal in D’s
last step, then the induction assumption for a smaller proof D is used,
see case 5. Otherwise if φ is not used in owns-L,

E :
Γ, φ, owns(a, d) ⊢a ψ

owns-L,

then a cut-free derivation of ψ is a single application of the owns-L
rule.

5. φ is not principal in D. The cut-formula is not principal in the
derivation D if the derivation ends in one of the (left) rules: →L, ∀L,
∧L1, ∧L2, obs-act, owns-maysay.

All the cases for the different left rules are similar. As an example we
show the case for ∧L1.

If the proof D consists of proof D1 followed by ∧L1:

D :
Γ′, φ1 ⊢a φ

Γ′, φ1 ∧ φ2 ⊢a ψ
∧L1 E : Γ′, φ1 ∧ φ2, ψ ⊢a ψ

′

then by weakening D1 with φ1 ∧ φ2 and weakening E with φ1 one get
proofs for Γ′, φ1, φ1 ∧ φ2 ⊢a ψ and Γ′, φ1, φ1 ∧ φ2, ψ ⊢a ψ′ thus by
induction (the weakened D1 is shorter than D and the weakened E is the
same length as E), there is a cut-free proof for Γ′, φ1, φ1∧φ2 ⊢a ψ

′. By
applying ∧−L1 and then contraction one derives the required sequent
Γ′, φ1 ∧ φ2 ⊢a ψ

′.

The cases for the other left rules are done in the same way.

6. φ is not principal in E. One can apply the induction assumption
on the D and E1, to obtain a cut free proof F1 and then apply the same
right rule as the righthand side of the sequents proven by E1 and F1

are the same.

7. φ is principal in both D and E. This is the most elaborate case.
We must split cases for the different forms of the cut-formula and use
the induction assumption for a sub-formula of the cut-formula.

(a) Subcase φ = φ1 → φ2. There is one case for the last inference
of D:

D :
Γ, φ1 ⊢a φ2

Γ ⊢a (φ1 → φ2)
→ L
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and E’s last inference must be →L:

E :
Γ ⊢a φ1 Γ, φ2 ⊢a ψ

Γ, (φ1 → φ2) ⊢a ψ
→ L

One can apply the induction assumption on the premise in D
and the first premise in E to obtain a cut-free proof for Γ ⊢a φ2

and again use the induction assumption on this proof and the
second premise in E to obtain a cut-free proof the required sequent.
(Both cases use a simpler cut formula.) The cases for φ with the
connectives ∧ and ∀ are done in the same way.

(b) Subcase φ = maySay(b, c, φ1 ). There is one case for the last
inference in D:

D :
Γ′ ⊢a φ1

Γ′′,maySay(b, c,Γ ′) ⊢a maySay(b, c, φ1 )
refine

Then E’s last inference must be refine:

E :
Γ′, φ1 ⊢a ψ1

Γ′′,maySay(b, c,Γ ′),maySay(b, c, φ1 ) ⊢a maySay(b, c, ψ1 )
refine

then the induction assumption can be applied for the proofs D1

and E1 of the premises to reach the required sequent without the
use of either refine-rule.

(c) Subcase φ is atomic. There are two cases for the last step in D
(where φ is principal), being init and owns-L, which were treated
in the cases 1 and 3.

This completes the proof.

Cut-elimination implies both consistency and semi-decidability. In se-
quent calculus consistency is shown by proving that falsity can not be de-
rived: ν ⊢ ⊥. Now the AC2 policy language does not have a separate
predicate for falsity, but in AC2 ∀d owns(a, d) behaves much like falsity. We
show that it can not be derived.

Corollary 1 (Consistency) For any a ∈ AG, ν ⊢a ∀d owns(a, d) cannot
be derived.

The proof is as follows. Cut-elimination states that for every derivation
in ⊢a there is also a derivation of the same proposition in the cut-free calculus
⊢+
a . Suppose there is a derivation of ∀d owns(a, d) in ⊢a, then there must

be one also in ⊢+
a . However there is no right rule for introducing owns(),

hence ⊢a is consistent.
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Corollary 2 (Semi-decidability) Given a proposition Γ, a, and φ, prov-
ability of Γ ⊢a φ is semi-decidable.

To show that provability of Γ ⊢a φ is semi-decidable we outline a proce-
dure, that finds a proof of Γ ⊢a φ, if Γ ⊢a φ holds.

First of all, cut-elimination implies that we can restrict proof search to
the cut-free sequent calculus ⊢+

a . The proof rules in ⊢+
a satisfy the subfor-

mula property in the sense that every derivation (of Γ ⊢+
a φ only contains

subformulas of the formulas in Γ or φ. This is the main reason why bottom-
up proof search is efficient in the sequent calculus [71]. Except for the con-
traction rule, in each rule the premises contain structurally smaller formulas
than those in the conclusion. Hence without contraction proof search would
terminate, but of course, without contraction, it would not be complete.
The contraction rule is dealt with separately as follows.

The first step of the procedure consists of searching for proofs in ⊢+
a that

use the contraction rule at most n times. This step terminates. If a proof
is found, then Γ ⊢a φ is provable. Otherwise the procedure continues with
a new proof search for proofs in ⊢+ that uses contraction n+ 1 times.

The procedure hence terminates, and decides that Γ ⊢a φ holds if it
holds. But the procedure never decides that the proposition is not provable
though, if it is not. In the next section we show an implementation of this
procedure using Prolog.

3.3.2 Prolog code

To find justification proofs in the AC2 framework we have implemented a
proof finder in Prolog, which we call PFF (Prolog Proof Finder). PPF finds
(automatically) an AC2 justification proof, from a given log, for a given
action, if such a proof exists. If no proof exists, PPF may not terminate.
PPF can be used by agents during an audit, when a justification proof must
be presented to an auditor (see Figure 6). Alternatively, PPF can be used
before performing an action, if the performing agent is unsure about whether
or not the action is allowed.

PPF is written in SWI Prolog (a public and ISO compliant Prolog sys-
tem). PPF was designed to output proof terms that can be checked directly
by TPF, the proof checker written in Twelf (see Section 3.2). This is an
important design choice. It makes the proof finding procedure more com-
plicated, yet on the other hand this allows us to skip the verification of the
proof finder code. Instead of proving that the proof finder works correctly,
we simply verify its output by using the Twelf proof checker.

PPF is not a state-of-the-art theorem prover, but only a proof of concept.
PPF does not implement the rules for the linear context ∆ for example. We
discuss possible improvements and alternatives in the conclusions of this
chapter.
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Let us introduce the Prolog code of PPF:

• Predicates, connectives and policies of the AC2 language, are repre-
sented as (nested) lists. For example, the predicate mayWrite(a, d) ∧
mayRead(a, d) is written as a nested list

[and, [maywrite, a, d], [mayread, a, d]].

• Entailment (⊢) is represented by the Prolog predicate entail\5. Find-
ing a proof of Γ ⊢a φ is thus reduced to solving the Prolog goal,
entail(a, gamma, phi, proof). The last argument is output: proof is
the proof term, a string that is a proof of Γ ⊢a φ, which can be checked
directly by our proof checker.

• The proof rules of the proof system of AC2 are implemented by logic
programming clauses, where the conclusion of the proof rule forms the
head of the clause, and the premises of the proof rule form the body
of the clause. Let us give a simplified example, by showing the ∧L1

rule in formal notation and its translation into Prolog. Here we ignore
the additional contexts to illustrate the basic idea. The rule ∧L1,

Γ, φ1 ⊢A ψ

Γ, (φ1 ∧ φ2) ⊢A ψ
∧L1

is translated to:

entail(A,[[and,Phi1,_] | Gamma1,Psi,[’ (and_l1’,Proof,’)’]):-

entail(A,[Phi1|Tail],Psi,Proof).

Now, PPF works as follows: Suppose we want to find a proof of the
expression Γ ⊢a φ, then we ask Prolog to solve the query:

entail(A, Gamma, Phi, Proof)

All variables are bound to values, except Proof, so if Prolog resolves
the query, it will come up with a value for it, which is a proof term.
Prolog resolution thus amounts to bottom-up proof search for Γ ⊢A Φ
in the AC2 proof system.

• Translating the rules for universal quantification in Prolog is compli-
cated. Prolog variables can not be used directly, because we want to
be able to control variable renaming, and separate true variable from
meta-variables. In PPF we implement a unification procedure based
on Paulson’s article on first-order logic theorem proving [69]: Quan-
tified expressions are written as [foral,x,[mayRead, x, d], without
using Prolog’s built-in variables.

In the ∀L rule the bound variable y in φ(y) can be replaced by any
value x, but because we do bottom-up proof search - to avoid having
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to guess a good value for x - we postpone this choice until we arrive
at the top rules (such as init (I) and owns-L). We unify variables in
the top-rules (I, and owns(−)L) and also in the refine rule, where we
unify agent variables in maySay().

We only implement unification for atomic formulas which is sufficient
because we can always decompose formulas left and right of the ⊢ to
atomic formulas (with left and right rules, or refine in case of maySay).

In the ∀R rule, x must be a fresh value, that was not used be-
fore. Because, as mentioned above, we postpone unification in the
∀−L rule (see above), fresh values depend on the meta-variables that
are still to be unified. In PPF fresh values are terms of the form
param(name,[...]), where the list is used to do an occurs-check in the
unification predicate unifiabl\3.

• In the refine-rule,

Γ1 ⊢a ψ

Γ′
1,maySay(b, c,Γ1 ) ⊢a maySay(b, c, ψ)

refine,

since we do bottom-up proof search, we must match sender-receiver
variables of the maySay predicates on both sides of the ⊢, before pro-
ceeding. If there are meta-variables in these places (see above) we have
to unify them here and proceed with the assigned values. The Prolog
code of the refine rule is as follows.

entail(Agent,Gamma,[maysay,B,C,Psi],Proof,Env):-

sublist_of_maysay_formulas(Gamma,GMaysay),

length(GMaysay,N),

maysayinverse(GMaysay,G,List1),

pad1([B,C],N,List2),

unifiabl(List1,List2,Env1),

entail(Agent,G,Psi,Pf,Env2),

append(Env1,Env2,Env),

perm(GMaysay,_,Gamma,PfPerms,PfBras),

mapmaysaypf(G,GMaysay,PfMapMaysay),

concat_atom_f([PfPerms,

’ (refine’,Pf,PfMapMaysay,’)’,PfBras], Proof).

Basically, in the first subgoal we select a sublist of Gamma, GMaysay,
that contains only formulas of the form [maysay, ., ., .]. The third,
fourth and fifth subgoal take care of the unification step for agent
variables b and c left and right of the ⊢. The sixth subgoal tries to
close the branch by proving the premise of the refine rule, and the
nineth subgoal produces a proof (term) of the proposition that the
sublist GMaysay is a map, under maySay, of the list G. The last subgoal
prints the proof term needed for proof checking.
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• The owns-left rule,

data aff(φ) ⊆ {d1, . . . , dn}

Γ1, owns(a, d1 ), ..., owns(a, dn ) ⊢a φ
owns-L,

is again a top-rule. In PPF the rule is implemented as:

entail(Agent,Gamma,Psi,_,Proof,Env):-

data_aff(Psi,Datalist,PfOmega),

pad2(Agent,Datalist,List1),

sublist_of_owns_formulas(Gamma,GOwns),

ownsinverse(GOwns,List2),

unifiabl(List1,List2,Env),

mapownspf(Agent,Datalist,GOwns,PfMapowns),

perm(GOwns,_,Gamma,PfPerms,PfBras),

concat_atom_f([PfPerms,’

(owns_l’,PfAffData,PfMapowns,’)’,PfBras], Proof).

The first subgoal checks if the affected data (data aff) is defined for
the formula Psi, and which data must be owned by agent A for the
owns-rule to apply. The second, third and fourth subgoal select owns
predicates from the context Gamma and check whether these owns pred-
icates can unify in the right way. The fifth subgoal prints a proof term
that proves that the sublist of Gamma containing the owns predicates
is indeed a sublist of Gamma. The final subgoal concatenates the full
proof term for this branch.

For reasons of efficiency we do not directly translate the permutation
rules in Prolog. The permutation rule for the first context is written as
follows.

Γ1, φ1, φ2,Γ
′
1; Γ2;∆ ⊢a ψ

Γ1, φ2, φ1,Γ
′
1; Γ2;∆ ⊢a ψ

P-L1

Permutation allows the use of left-rules or top-rules, by positioning elements
at the first position of the list of hypotheses. In PPF we replace the permuta-
tion rules by a predicate perm\5 in every left (L) and top-rule. The predicate
perm\5 that checks membership of a formula in a list (using member), and
determines the permutations needed to place the formula to the front of
the list. (In addition it returns the newly ordered list where the required
element is at the first place, as well as a proof term that describes the use
of the permutation rule. ) This predicate can be seen in the ∧L1 rule for
example:

entail(Agent,Gamma,Psi,Proof):-

perm([[and,Phi1,_]],Tail,Gamma,PfPerms,PfBras),

entail(Agent,[Phi1|Tail],Psi,Pf),

concat_atom_f([PfPerms,’ (and_l1’,Pf,’)’,PfBras], Proof).
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This implementation of permutation is complete, since permutations are
transitive, and because permutations commute with the right (R) rules. The
predicate perm) actually output abbreviated proof terms, by using permuta-
tion lemma’s.

3.3.3 Proof search

Prolog’s resolution procedure is depth-first, which means that, given a propo-
sition, it will try to prove it by following the first (leftmost) branch. Prolog
does not move to the next branch unless it reaches a failure point, i.e. a
point in which the selected atom does not unify with the head of any clause.
If a branch is infinite, then Prolog does not move to the next branch. The
problem here is that if the proof is not found in the infinite branch, Prolog
does not explore other perhaps more fruitful branches.

Proof rules that do not have the so-called sub-formula property cause
infinite branches. Bottom-up proof search only works if all the rules have
the sub-formula property. There are two proof rules that are problematic
from this point of view: the cut-rule, and the contraction rule.

• The cut-rule would be translated in Prolog as follows:

entail(A,Gamma,Psi,Proof):-

entail(A,Gamma,Phi,PfC1),

entail(A,[Phi|Gamma],Psi,PfC2),

concat_atom_f([’ (cut’,PfC1,PfC2,’)’], Proof).

For any entail(Agent,Gamma,Psi,Proof) the cut-rule can be used, any
number of times. There are infinitely many values for Phi for which the
subgoal entail(A,Gamma,Phi,PfC1) can be solved, because the formula
Phi does not occur anywhere in the conclusions of the proof rule (in
the head of the Prolog clause). Prolog will try all the possible values
(infinitely many). We have showed, by the cut-elimination theorem,
that the cut-rule is redundant, so we do not have to encode the cut-
rule in PPF.

• The contraction rule would be translated in Prolog as follows:

entail(Agent, [Phi|Gamma], Psi, Proof):-

entail(Agent,[Phi|[Phi|Gamma]], Psi, Pf).

pfappend([Phi],[Phi|Gamma],Psi,Pf2),

concat_atom_f([’ (c_l1’,Pf,Pf2,’)’],Proof).

Again, as with the cut-rule, the contraction rule always applies, and
it causes each branch to become infinite. Now, in propositional logic
it can be shown that after applying contraction three times for each
formula in Γ, no new proofs are found. This is a way of showing that
propositional logic is decidable. In predicate logic, because of the ∀L
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rule, such a bound on the use of contraction does not exist. Therefore,
to avoid the infinite branches caused by the contraction rule, in PPF
we control its use by limiting the number of times it can be used in
a given branch. We increase this limit only when no proof is found.
The limit is implemented by adding an integer variable to entail, and
decrease it each time the contraction rule is applied.

entail(Agent,[Phi|Gamma],Psi,Lim,Proof):-

Lim > 0, LimNew is Lim - 1,

entail(Agent, [Phi|[Phi|Gamma]], Psi, LimNew, Pf),

concat_atom_f([PfPerms, ’ (c_l’, Pf,

’(append_cons append_nil)’, ’)’, PfBras],Proof).

Restricting the contraction rule in this way forces a breadth-first search
(across the branches that use contraction Lim times). Thus ensuring a com-
plete proof search, that is, if there is a proof of a proposition, then it will
be found by PFF.

3.4 Related Work

Closely related to our prototype is the BLF system [90], which uses a pol-
icy language based on Binder [30] (a predicate Horn logic). BLF focusses
on providing a framework for checking semantic properties of software code
(proof-carrying code). In BLF proofs about the correctness of software are
generated using Prolog, and checked using Twelf (like in the AC2 frame-
work). The Binder language used in BLF is a subset of the AC2 language.
In particular it is restricted to Horn clauses, and hence common access con-
trol policies such as ∀x.isdoctor(x ) → read(x ,file) ∧ write(x ,file) can not
be expressed in BLF. Proof finding in Horn clauses is more easy, and de-
cidable. Furthermore, although Binder features a says predicate, related
to our maySay predicate, it does not allow nested delegation, for the sake
of tractability. The latter is a severe restriction, in settings with chains of
delegations such as those occurring in dynamic collaborative environments
where users delegate rights to other users, who in turn delegate to other
users. We have shown that in our logic, nesting of the maySay predicate
does not yield intractabilities.

PCA is a system to check access requests of web clients for protected
resources on web servers. The proof checker of PCA is implemented in Twelf,
while a tactical proof finder is implemented in Java. Manual proof finding is
necessary because, unlike AC2, the policy language of PCA includes higher-
order expressions. This feature provides greater flexibility than in AC2. For
instance, any of the proof rules in the AC2 proof system can be expressed
and issued by a user as a normal policy. On the other hand, proof finding
becomes intractable, and properties of the proof system, such as consistency,
can not be proven once and for all, but they depend on which policies are
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issued by the users, at runtime. The PCA prototype, implemented in Twelf,
introduces a type ’world’ which is similar to the logical contexts (Γ) that
usually occur in sequent calculi. Finally, the PCA proof system is a classical
logic, while in AC2 we use an intuitionistic proof system, to avoid certain
indirect justification proofs (that use the rule of excluded middle).

SD3 is a trust management system that uses, like AC2, separate tools for
finding and checking proofs [51]. Like in AC2, the safety of the SD3 system
does not depend on the correctness of the proof finding algorithm, but only
on the proof checker. SD3 uses Prolog however for proof checking, while we
use Twelf’s type checker for that purpose. The proof finder for SD3 (referred
to as ’certified evaluator’) is straightforwardly written in Prolog, since SD3
uses only Datalog expressions. Like Binder, Datalog can not express some
common policies (see above).

Our implementation in Twelf is based on the LF signature for intuition-
istic logic introduced by Harper [41]. We refine his approach by distinguish-
ing also the subtypes for agents and data, and those for actions and policies.
Harper’s LF signature implements a first-order logic proof checker using
natural deduction. As mentioned earlier, natural deduction is not directly
suitble for mechanical proof finding, as opposed to the sequent calculus that
we use. Moreover, the intuitionistic sequent calculus we use is explicit about
the assumptions used in the proofs, which makes the use of the agent’s log
entries explicit in the propositions.

PPF is inspired by Folderol, a prototype proof finder written by Paulson
in ML [69]. Paulson mentions that Prolog is indeed the natural choice for a
mechanical theorem prover, but, he chooses ML to avoid the technicalities
involved with fixing Prolog’s unsound unification procedure. Paulson does
refer repeatedly to a Prolog version of the Folderol theorem prover, but this
version was never published (nor could Paulson provide us the code). PPF
extends Folderol in the sense that PPF apart from finding the proofs, also
outputs the syntax of the proof itself. Instead of merely checking whether
a proposition holds or not. PPF generates proofs that can be checked with
the Twelf implementation of the corresponding proof system.

3.5 Conclusions

We have developed two tools (TPC, and PPF) that implement the AC2

framework. Our proof checker TPC is implemented in Twelf, while our
proof finder (PPF) is implemented in Prolog. We have also proven that a
cut-elimination theorem holds for the AC2 proof system. Cut-elimination is
an important theorem for showing consistency, and for allowing mechanical
proof search. PFF is based on the cut-elimination theorem for the AC2 proof
system.

Twelf is a convenient tool for experimenting with a logic. Twelf’s built-
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in type checker refuses to accept conflicting or ambiguous type declarations.
At the same time, Twelf is flexible enough to implement even higher-order
logics. The implementation of the policy language and proof system of AC2

consists of under a hundred lines of Twelf code. The safety of the audit
process (which relies on rejecting false proofs) depends only on the Twelf
signature, which is short and straihtforward to verify.

Prolog is a natural choice when implementing a theorem prover. Our
prototype theorem prover is a proof-of-concept and not a state-of-the-art
theorem prover, and we do not focus on performance or efficiency issues.
The fact that Prolog’s own unification algorithm is unsound (which allows
it to be more fast), complicates proof finding in a predicate logic like ours.
Alternatively, instead of using a full-fledged theorem prover, agents could
also use standard templates for proofs of common permissions from common
actions. A second possibility may be to use lean theorem proving [19], which
is fast at finding proofs for simple propositions, but slower for more complex
propositions. For future research it would be interesting to see whether the
lean theorem prover iLeanTap for intuitionistic logic can be converted to
proofs checkable by Twelf’s typechecker, and be extended with the AC2 rules
owns-L and refine. More in general we believe that lean theorem proving is
an interesting future possibility for theorem proving in access control logics.



Chapter 4
Electronic Health Records

4.1 Introduction

Traditional access control mechanisms aim to prevent illegal actions a-priori
occurrence, i.e. before granting a request for a document. There are scenar-
ios however where the security decision can not be made on the fly. For
these settings we developed AC2 a policy language and a framework for a-
posteriori access control. In Chapter 2 we have shown that AC2 provides a
flexible system for use in a dynamic collaborative environment in a consul-
tancy firm, where consultants create and exchange confidential documents.
In this chapter we focus on the setting of an Electronic Health Record (EHR)
system in a hospital.

Roughly speaking, Electronic Health Record (EHR) systems must fulfill
two requirements [85]: (1) To provide high-quality health care, the EHR
must be immediately available, preferably across the boundaries of the dif-
ferent hospitals and abroad. (2) To protect the patient’s privacy, the EHR
must remain confidential and should be disclosed only according to the law
and/or the patient’s explicit consent. The first requirement is crucial to
improve the quality of health care. Medical errors are often caused by lack
of information, or erroneous information and paper-based processing is slow,
and error prone. The second requirement is important to protect the privacy
of patients, and medical staff, especially in countries such as The Nether-
lands, where medical insurances are privatized and medical records have
become valuable business information.

Fulfilling both requirements is hard. To fulfill the first requirement, the
mechanism should be relatively simple and fast. The second requirement
however states that access should only be granted under precise conditions
and circumstances. Considering the complexity of the medical work flow,
the large number of health records and the variety of institutions, users and
systems involved, checking these circumstances and conditions is not simple
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or fast.

Besides the problem of designing a fast access control mechanism that
at the same time takes into account complex conditions [9, 18, 40], it is
considered impossible, in general, to design an access control mechanism
that models every circumstance perfectly [74]; in other words, there will
always be exceptional, unforeseen circumstances. This is an important issue
in the EHR setting, given the mobility of patients and staff, and the urgency
of health care. We believe that at least it should be possible for medical staff
to self-authorize exceptions to rules, while leaving the process of justifying
the exceptions for later.

In this chapter we argue that many of the legal requirements for EHR
systems are addressed directly in AC2, and we argue that AC2 is suitable
for use in an EHR system. We illustrate our case by describing a simple
scenario involving medical personnel and health records to show how AC2

can be used in a hospital.

4.2 Scenario

We describe a simple scenario involving a hospital’s EHR system, the hospi-
tal’s privacy officer, patients, and medical personnel.

4.2.1 General setting

The agents involved here are patients, doctors, nurses and administrative
employees; the users of the EHR system. The data consists of the medical
records and the actions we consider are reading and updating a medical
record, and administering and billing drugs. Medical records are updated
through appending a block of new information digitally signed by the agent
that updates the record.

The form of the medical records we consider is inspired by the legal di-
rectives on privacy of health records [84, 85]. A medical record is divided
into two parts: first, the personal information, PI, records all non-medical
information related to the patient, like billing information, and information
regarding the patient’s family members (which may have medical records of
their own). Second, the medical data (MD) gathers all the medical informa-
tion of the patient, like diagnoses and given prescriptions.

Additionally, several auditors have the mandate of controlling that the
medical records are used appropriately, i.e. the hospital’s internal auditor, a
governmental body and a patient union representative. Independently, these
auditors may audit different sections of the organization.

The hospital has defined a general policy, φh, to protect the privacy of
patients and allows medical personnel to access and handle the necessary
health information. The policy is shown in Figure 8.
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h1: Patients may read and update their record’s PI section and au-
thorize others to do so.

h2: Patients may read and update their record’s MD section and au-
thorize others to do so.

h3: Doctors may read the PI section of their patients health records.

h4: Doctors may read and update the MD section of their patients
health records.

h5: Doctors may give drugs to their patients.

h6: Doctors can delegate to nurses on their staff the administering of
drugs.

h7: Administrative employees may bill patients for every drug admin-
istered.

Figure 8: The hospital’s policy.

We assume that whatever is not explicitly mentioned in the policy, is
not permitted, and that each policy added entails more permissions (mono-
tonicity). Additional policies may be added later to this general policy by
the individual users, for example patient consent given to medical staff, or
authorizations among medical staff. We will give examples in the sequel.

We assume users simply send policies to each other by using signed
emails. We do not model explicit prohibitions, which would require special
procedures for propagation in a distributed setting (See for example the
distributed revocation mechanism of SPKI/SDSI [75]).

Let us introduce the scenario-specific AC2 actions, and predicates needed.
The actions in this example are read(), update(), giveDrug(), and bill().
The predicates mayRead(), mayUpdate(), mayGiveDrug(), and mayBill()
are the corresponding permissions. The predicates isPI (), and isMD() de-
note classification of the information contained in d1: isPI (a, d1 ) if d1 is
Personal Information of agent a and isMD(a, d1 ) for Medical Data. The
predicates isDoctorOf (), and onStaffOf () denote professional relationship
between agents: isDoctorOf (a, b) if a is the doctor of b and onStaffOf (a, b)
if a is on the staff of (doctor) b.

Using the scenario-specific actions and predicates we can translate the
Hospital’s policy into the AC2 policy language (see Figure 9).
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h1 = ∀a, d1.isPI (a, d1 ) → owns(a, d1 ).

h2 = ∀a.isMD(a, d1 ) → owns(a, d1 ).

h3 = ∀a, b, d1.
(

isDoctorOf (b, a) ∧ isPI (a, d1 )
)

→ mayRead(b, d1 )

h4 = ∀a, b.
(

isDoctorOf (b, a) ∧ isMD(a, d1 )
)

→
(

mayRead(b, d1 ) ∧ mayUpdate(b, d1 )
)

.

h5 = ∀a, b, c.isDoctorOf (b, a) → mayGiveDrug(b, a, c).

h6 = ∀a, b, c, d1.
(

isDoctorOf (b, a) ∧ onStaffOf (c, b)
)

→ maySay(b, c, mayGiveDrug(c, a, d1 )).

h7 = ∀a, b, c, d1.isAdministrative(c)

→
(

giveDrug(b, a, d1 )
!
→ mayBill(c, a, d1 )

)

.

Figure 9: The hospital’s policy of Figure 8 written in AC2’s policy language.

4.2.2 Examples

Let us instantiate the general setting to a concrete instance, and give some
examples of how AC2 would work in this setting. We have patient Paris,
doctor Alice, Dave, nurse Bob, and administrative employee Charlie.

Below we use the following notation: When an action, say read(),
occurs in the system we write a separate line

acti : read(),

where acti is an instance of an action of the type read(), requiring
the permission mayRead().

Example 11 (Patient consent) Paris starts to visit the hospital, where
she visits doctor Dave. Paris becomes a patient of doctor Dave by explic-
itly acknowledging the patient-doctor relationship in a policy communication.

act1: comm(Paris,Dave, isDoctorOf (Paris,Dave)).

Doctor Dave logs this action. Dave is now allowed to read and up-
date the health record of Paris. He has retrieved the two parts PI Paris and
MD Paris. Doctor Dave reads the PI section of Paris’s record, to remind
himself of Paris’s personal details, and updates the MD section of her record.
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act2: read(Dave,MD Paris).
act3 : update(Dave,MD Paris).

Now doctor Dave needs to get a second opinion from another doctor.
He asks Paris for consent. Paris agrees and prepares the policy φParis for
Dave, where φParis is,

∀b, d1

(

isMD(Paris, d1 )∧isDoctor(b)
)

→ maySay(Dave, b, mayRead(b, d1 )).

Paris’s policy, hence, is more specific, and more permissive, than the
hospital’s policy. The new policy permits doctor Dave to delegate, to any
doctor, the permission to read the MD section of Paris’s medical record.
The PI section of her record remains private. Paris communicates her new
policy φParis to doctor Dave:

act4: comm(a, b, φParis ).

Dave logs this action.

Doctor Dave logs the actions act1, and act4 because the evidence of
these events may be useful for him later on, in case of an audit. For example,
Dave could use act4 later on to prove that he was allowed to show the health
record of Paris to another doctor. Actions act2 and act3 are of no interest
to him.

Auditors on the other hand may keep an independent (e.g. random)
track of actions, in so-called audit trails. They might be interested rather
in act2, and act3 because they are actions that actually affect the privacy
and integrity of health records.

The hospital’s privacy officer is one of the auditors in the EHR system.
It monitors queries to the health record database, both to detect anoma-
lous behavior and to ensure that the hospital’s policy is adhered to. The
communications between doctor Dave and his patient Paris (containing AC2

policies ) are of no direct concern to him. These actions may become known
to him in the course of an audit, being used in some justification proof. In-
dependently, an external auditor controls the financial accountability of the
hospital, i.e. to ensure that only actual costs are billed to patients. This
external auditor is not interested in access to health records, but rather in
which drugs have been given to Paris, and how often.

Example 12 (Internal hospital privacy audit) The hospital’s privacy
officer asks Dave for a justification for having accessed Paris’s record (ac-
tions act2, and act3). We abbreviate Paris, Dave, and MD Paris, by a, b,
and d1 in this example. To give a justification Dave (agent b) uses h3 from
the hospital policy, his logged evidence of act1, and a proof of

[h3, isMD(a, d1 )]; [act1]; ν ⊢b mayRead(b, d1 ).
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Dave’s proof is as follows.

π1 π2

[isMD(a, d1 )]; [act1]; ν ⊢b isDoctorOf (b, a) ∧ isMD(a, d1 )
∧R

[mayRead(b, d1 ); ν; ν ⊢b mayRead(b, d1 )
I

[
`

isDoctorOf (b, a) ∧ isPI (a, d1 )
´

→ mayRead(b, d1 ), isMD(a, d1 )]; [act1]; ν ⊢b mayRead(b, d1 )

[h3, isMD(a, d1 )]; [act1]; ν ⊢b mayRead(b, d1 )
(∀L)3

→ L

Here π1 and π2 are proofs of isMD(a, d1 ), and isDoctorOf (b, a), using
the proof rules init (I), obs-act, and act1, the patient consent.

The auditor can check Dave’s proof, and concludes that, indeed, Dave
can account for action act2, and act3. For technical implementation (in
Twelf) of proof checking we refer to the previous chapter.

In this example patient consent is literally translated to a policy com-
munication. At the same time, the auditor only observes the actions that
affect the health records, not the policy communications. The auditor can
be initially unaware of the policy communications between Paris and Dave.
AC2 supports delegation without the need to keep track of it centrally.

Example 13 (Urgent recovery) Unexpectedly, Paris arrives injured at
the hospital. Her doctor Dave is off duty, but doctor Alice is in, on a shift
with nurse Bob. Alice treats Paris immediately. Let us go over the actions
during Alice’s shift. First, Bob starts his shift with doctor Alice. Alice
affirms Bob is a nurse on her shift.

act5 : comm(Alice,Bob, isOnStaffOf (Bob,Alice)).

Bob logs this for later. After a while in the shift, Paris arrives in-
jured at the hospital.

Informally Paris asks for treatment. Alice reads and updates the MD
section of Paris’s health record:

act6 : read(Alice,MD Paris).
act7 : update(Alice,MD Paris).

Informally doctor Alice tells nurse Bob to give Paris the drug Qurol
(a general purpose medicine), and Bob gives the drug.

act8 : giveDrug(Bob,Paris,Qurol).

For the purpose of billing, Bob has notified administrative employee
Charlie that Qurol was given to Paris:

act9 : notify(Bob,Charlie,Qurol ,Alice).
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Charlie logs this for later, and bills Paris (or her health care plan)
for the drug. Charlie sends the bills.

act10 : bill(Charlie,Alice,Qurol).

A couple of hours later, when Paris is feeling a bit better, Alice comes
to see Paris and explains to her that she will have to remain a bit longer in
the hospital, for medication and observation. Alice also asks Paris for her
formal consent to being her patient.

act11 : comm(Paris,Alice, isDoctorOf (Alice,Paris)).

Afterwards when the shift is over, Alice files the drug prescriptions
for Paris, and she authorizes Bob, a-posteriori, to give the drug to Paris.

act12 : comm(Alice,Bob,mayGiveDrug(Bob,Paris,Qurol)).

Figure 10 shows the sequence of actions shown in the last example. Both
Alice and Bob initially acted without formal authorizations, but only with
informal ones. The formal authorizations are given a-posteriori (actions
act11 and act12).

Example 14 (Auditing hospital shifts) The hospital’s privacy officer
audits key actions in the EHR system, and some random ones, after each
shift. The auditor may ask doctor Alice to account for having accessed
Paris’s health record (actions act6 and act7). The justification for this
action relies on a later action (act12) and the hospital’s policy. For exam-
ple, when Alice is asked to account for giving Qurol to Paris, she can send
her log of action act12, together with a proof of

ν; [act12]; ν ⊢Bob mayGiveDrug(Bob,Paris,Qurol).

The auditor accepts this proof, and concludes that Bob complies to hospital
policies.

Alice and Bob, in this example, can treat the patient immediately and
deal later with the necessary details for administration and accountability.
Initially not all the authorizations were available, so Alice and Bob have to
arrange for authorizations a-posteriori. Charlie, on the other hand, did not
perform any actions that rely on a-posteriori authorizations. Both types of
justifications can be used in AC2.

Example 15 (Billing) The next morning Bob gives another dose of
Qurol, in line with what Doctor Alice prescribed.
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act6 (reads ehr)

act7 (updates ehr)

act5 (on staff)

act12 (auth. Qurol)

act11 (consent)

act8 (gives Qurol)

act9 (notifies Qurol was given)

act10 (bills Alice)

Hospital
auditor

External
auditor

EHR
database

Finances

Paris

Alice Bob

Charlie

Figure 10: The sequence of actions involving the patient Paris. The actions
are numbered according to the order of their execution. So the actions act12,
denoting doctor Alice’s authorization for nurse Bob to give the medicine
Qurol, and act11 denoting Paris’s formal consent to being treated by doctor
Alice, occur after the key actions act6 to act10. They serve Alice and Bob
for later justification, for example to the Hospital’s auditor.

act14 : Bob administers the medicine.

act15 : Bob notifies Charlie that Qurol was given to Paris.

Charlie logs this for later.

act16 : Charlie bills Paris a second time for the drug.

Charlie logs this, together with a reference to Bob’s notification.

In this example we show AC2’s use-once obligations. The policy h7 allows
Charlie to bill Paris each time someone gives her a drug. Charlie, when
adding to the bill of Paris, needs to reference the corresponding notification
by Alice. AC2’s proof system prevents from using the same notification
twice. An external auditor can check financial accountability in this way.

It is important that all the critical actions that involve medical records
are caught in the audit trail, to allow auditors to perform meaningful audits.
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Let us assume for the sake of example that the hospital has outsourced the
work of billing to a private enterprise, called Clearinghouse X ). Charlie who
works there and is responsible for billing the patients, has a regular office
with a computer and an internet connection. Charlie could send an email to
a friend outside the hospital attaching the notification by nurse Bob, that
Paris was treated with Qurol. To prevent this from happening, the hospital
could require access to the audit-trail of Clearinghouse X, that includes
the email traffic by Charlie, and audit these actions too. Or it could rely
Clearinghouse X to take measures, for example access control (audit-based
or not), combined with legal clauses in employee contracts.

4.3 Legislation

Not only does AC2 provide flexible access control for an EHR system in
case of medical urgencies. We argue that AC2 has a number of features
that address the key requirements from legislation about EHR systems [84,
85] as well. Consider for example the Health Insurance Portability and
Accountability Act (HIPAA) [85].

Example 16 (HIPAA) The general principal for use and disclosure is
stated as follows: A covered entity may not use or disclose protected health
information, except either: (1) as the Privacy Rule permits or requires;
or (2) as the individual who is the subject of the information authorizes
in writing. Covered entities are health care providers (hospitals), health
care plans (insurances), and health care clearinghouses (organizations that
process health information). HIPAA permits disclosures of an individual’s
health records in the following cases:

1. Disclosure to the individual.

2. Disclosure for the purpose of treatment, payment, or medical opera-
tions.

3. Disclosure permitted informally by the individual.

4. Incidental disclosures, that occurs despite reasonable safeguards.

5. Disclosure for the public interest and benefit, for example prevention,
donation, or law enforcement.

Besides the ’permitted disclosures’ listed here, patients can authorize addi-
tional disclosures for certain purposes (research, marketing, etc. ). In all
these cases, the covered entity must observe ’the principle of minimum nec-
essary disclosure’. HIPAA also states a number of rights that patients have.
The rights are called:
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• Privacy practice notice: the right to be informed of the covered entity’s
privacy practice.

• Access to the health records: the right to review and obtain a copy of
their health records

• Amendment: the right to have errors in health records amended.

• Disclosure accounting: the right to an accounting of disclosures of their
health records in the last six years.

• Restriction request: the right to request a restriction of disclosure of
their health records.

• Confidential communication requirements: the right to confidential
communication.

The rest of HIPAA contains administrative requirements, organizational op-
tions, provisions for representatives and minors, and some US specific legal
matters.

AC2 addresses many of the requirements in HIPAA.

• The general priniciple of HIPAA states that both legislation, and pa-
tient consent should be taken into account. Patient consent is an
important requirement in privacy legislation on health records. AC2

supports patient consent directly by the maySay() predicate. More-
over it is easy to combine individual authorizations with general policy
in AC2 (see Example 11).

• HIPAA allows disclosures permitted informally by the patient. AC2

supports informal consent by patients. Let us go back to the example:
Paris consents first informally to being treated. Alice starts the treat-
ment and deals with Paris’s formal consent only after the treatment.
This allows medical employees in such situations to continue with their
work, without delay.

• HIPAA act stresses that patients have the right to justifications of past
disclosures of their medical records (Disclosure Accounting). AC2 pro-
vides a formal definition of this accounting and the tools to automate
such accounting. Although not required in the HIPAA act, automation
is convenient to be able to run audit tools without human supervision,
enhancing both the privacy and the efficiency of the audits. This also
means that the logging of actions, that is a requirement in the AC2

framework, is already required by HIPAA.



4.4 Related Work 75

• Finally, the HIPAA act states that The Privacy Rule does not require
that every risk of an incidental use or disclosure of protected health
information be eliminated. Therefore, the main drawback of AC2, i.e.
that with a-posteriori access control we can not completely exclude
misuse, is in principle allowed by HIPAA.

On the other hand there are some HIPAA requirements that are not
addressed by AC2.

• HIPAA allows users to file a restriction request. AC2 does not include
a revocation mechanism. Combining communication and revocation of
policies would be an interesting possibility for future work. A possible
solution is to extend AC2 with a distributed revocation mechanism,
similar to that of SPKI/SDSI [75].

• HIPAA states that the user is always in control about his own health
record. In AC2 the user that creates a piece of data is owner of that
data. In health care this is perhaps not always appropriate. Intuitively
a doctor, when a new patient comes, creates a new file and fills it with
health information he acquires along the way. A possible solution is
to allow the doctor to create a new file, with only a placeholder for
the owner, in such a way that eventually the patient, by uttering some
kind of approval, becomes the owner of the file.

4.4 Related Work

The Cassandra system [18] was designed to implement an a-priori access
control mechanism in an EHR system. The authors test the expressivity
of the Cassandra policy language by expressing existing policies regarding
access to medical data and activation of medical roles. The policy languages
used in the Cassandra system are different flavors of Datalog with constraints.
While Cassandra’s policy language is in theory undecidable, it is argued that
this is not problematic in practice. The AC2 policy language that we use is
not based on Datalog, but on a fragment of first-order logic (see Chapter 2),
which is semi-decidable.

Rissanen et al. [74] address the issue of how to override safely the de-
cisions of a preventive access control system called the Privilege Calculus.
At each override a procedure starts to find the appropriate authority which
is notified to audit the override. In our approach there is only a minimal
preventive access control mechanism, which can not be overriden. Moreover,
in our approach it is up to the auditors to decide when and which users to
audit.

A related problem is the enforcement of copyrights in content-sharing
systems (DRM). It has been argued that DRM can be used to enforce pri-
vacy policies. For instance, Conrado et al. [24] propose to use DRM to enable



76 Electronic Health Records

privacy in content-sharing systems and vice versa to use privacy as a driver
for a wider use of DRM enabled devices. DRM however, unlike the AC2,
requires special (compliant) hardware or software at the application layer.
This makes standard DRM unsuitable for EHR systems or enterprise-privacy
systems. In the context of DRM, a type of a-posteriori access control was
proposed by Shmatikov and Talcott [81]. There, a reputation-based trust
management (TM) model is presented, in which the reputation of individual
agents is determined by the fulfilment or violation of (DRM) licenses. We
believe that Trust Management [62], coupled with auditing, may be an in-
teresting solution, especially in large distributed EHR systems, for instance
across a continent.

4.5 Conclusions

AC2 is different from conventional access control, in that it allows the health
care professionals to go ahead with their duties, without the need to obtain
full authorization. The details of authorization are dealt with at a later
(more convenient) time. Conventional a-priori access control system do not
offer this kind of flexibility. In a conventional access control system expired,
or incomplete authorizations block access to the data completely. In the
hospital examples we gave, the quality of health care for Paris would be
less.

Logging is a central part of AC2. Useful events or performed actions
have to be logged by the medical staff, for the purpose of accountability
(a HIPAA [85] requirement). By keeping logs of such events and actions,
doctors and nurses can account to multiple auditors that audit different
actions at different times. In conventional a-priori access control system,
on the other hand, the authorizations are only checked once by a single
authority, i.e. at the moment access is requested. While additional logging
and auditing is considered essential also in conventional access control [76],
these audits are conducted often without using formal procedures. AC2

provides a formal and automated auditing procedure. Automation allows
for fast routine audits, and is more privacy-friendly than auditing by hand.

In the EHR setting, privacy is an important issue for both patients and
medical staff. A-posteriori access control is in theory more intrusive to the
user’s privacy than a-priori access control. A-priori access control however
is also coupled with audits of logs and user actions [76, 77]. An automatic
audit procedure not only enhances the privacy of the patients, but also
that of the medical staff, wary perhaps of human auditors that go through
the logs by hand. Formal and public auditing procedures make the privacy
protection mechanism also more transparent to the patients as well as to the
medical staff. For future work it is interesting to investigate how to control
the actions of the auditors in turn and how we can achieve maximal privacy
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of the (honest) users with respect to those auditors.
A-posteriori access control has a characteristic drawback: it does not

prevent misbehavior, hence it does not give the robust security guarantees
that are required in e.g. military information systems. This is allowed by
HIPAA (see Section 4.3). In many settings, a-posteriori access control can
not replace preventive access control at all because the costs of incidental
misuse are higher than the costs of a (too) preventive security mechanism.
Furthermore, in AC2 it is important that users can be held accountable for
their actions, i.e. that a user will not vanish after executing (illegal) actions.
While not explicitly mentioned in HIPAA, it is already common in medical
settings to ask staff to account for past actions, for legal, medical, or financial
reasons.

A more complex aspect is mutual trust. We assumed for simplicity that
all users were equally trusted to utter security statements. Consider the case
where some foreign doctor, from another hospital, made changes to the drug
prescriptions for Alice. Strictly speaking, Dr. Dave can trust another doctor,
however, Dr. Dave’s employer may require him to make a more involved trust
decision that involves checking the foreign doctor’s reputation and expertise
area. Making such decisions can be supported by using trust management
(TM) systems [62]. On the one hand, the TM system should give a full
view of how users can be trusted, and on the other hand, when an auditing
authority finds that a user is not accountable, it should report this to the
TM system to decrease part the user’s reputation.
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Chapter 5
Privacy Policies

5.1 Introduction

In the previous chapters we have shown how AC2 can be used in fairly closed
settings - in a dynamic collaborative environment in a consultancy firm (in
Chapter 2), and in a hospital (in Chapter 4). In this chapter we argue,
by comparing AC2 to two existing (and well-known) privacy solutions, that
AC2 also provides a good solution in a third scenario: An enterprise that
collects (private) customer data on its website, processes it and then shares
it with partner enterprises.

Today, there is a widespread use of internet services such as online shops,
or customer support websites. Often, these internet services collect private
data about the user, such as the name, address, purchase history and so
on. Usually this data is collected for a particular purpose, for instance to
provide a service such as parcel delivery. However, because the customer
has no control, or clue, about how the data is processed or stored, the data
could also be used for other purposes. Let us give an example.

Example 17 (Cross marketing) Alice buys vegetables everyday at the lo-
cal market. She also orders, for her neighbor, a box of chocolates every week
from an enterprise called ’Store’ via their online website. The enterprise
’Store’ has collected private data about Alice (such her name, address and
purchase history), to ensure the correct delivery of the chocolates.

The enterprise has a partnership with a health insurance company. The
insurance company sponsors certain healthy products (such as low-fat vi-
tamin enriched butter): Customers who regularly buy healthy products are
asked if they are interested in receiving a discount coupon from the partner
enterprise that offers health plans. In that case the relevant customer data
(name, address, amount of butter purchased) is sent to the health insurance
company, and the discount coupon is sent to the customer.
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The insurance company is keen on increasing profits, and it uses several
tools to do so. One mechanism is to give incentives (like sponsoring butter),
another mechanism is to assign risk profiles to customers and customers of
partner enterprises, and certain insurance plans are only offered to people
with low risk.

One day, by mistake, the insurance company receives the purchase his-
tory of customers who bought chocolates. The insurance company decides
to change the risk profile for Alice from ’neutral’ into ’risky’, because of the
chocolates. She will be excluded from discount offers, or, if she already has
plan, she may even be excluded from extending her existing plan.

In this example, Alice’s privacy is breached, with direct consequences for
her insurance plan. Fortunately today there exist laws that force enterprises
to comply with precise privacy regulations [83, 84]. For instance, the Euro-
pean Union in 1995 issued a directive to its member states that regulates
the collection, storage and processing of personal data across the EU [83].
In 2002 this directive was extended to adapt to the ongoing changes in the
electronic communications sector [84]. Among other things, the directives
demand that enterprises only collect private data for specified and legitimate
purposes and that the data may not be processed in ways incompatible with
those purposes [83].

To see an example of how the EU directives translate to requirements
for computer systems, consider the previous example. On the checkout
page of their website, Store collects the private data of customers making a
purchase, such as their name and address. The first requirement, that follows
from the directive, is that the checkout page contains explicit statements
about the purposes for which the private data are being collected. The
second requirement is that the enterprise and her partners do not process
the private data for purposes other than those stated on the checkout page.
In Example 17 then both Store, and their partner insurance company would
have been violating the EU directive.

We distinguish three stages (see Figure 11) in the life-cycle of the private
data in this example. The first stage is the moment of collection by the
enterprise. In the example the private data is collected via a website. The
second stage is the processing inside the enterprise. In the example the
private data is used for sending out the parcels, and billing. The third stage
is the processing outside the enterprise, at the partner sites. In the example
the private data is used for offering discounts, and assigning risk profiles to
customers.

In this chapter we show how AC2 can be used to express and enforce
privacy policies, and we compare AC2 to two (well-known) privacy solutions
(E-P3P, and P3P). In Section 5.2, we discuss P3P which is widely used
in stage 1 (in Figure 11), where the enterprise collects the data from the
customer. In Section 5.3, we discuss E-P3P, which is designed for privacy
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Figure 11: The lifecycle of the private data in e-commerce.

protection of customer data inside an enterprise (stage 2). In Section 5.4 we
argue that AC2, can be used in all three stages, and is particularly suitable
for the protection of private data across enterprise boundaries (stage 3).

5.2 Platform for Privacy Preferences

In most countries, privacy legislation demands that websites provide a pri-
vacy statement explaining which private data is collected, who will see it,
for how long it will be stored, et cetera [83, 43]. However, privacy state-
ments and disclaimers printed on websites are often long and complex, and
difficult to understand quickly by the ordinary internet user. Platform for
Privacy Preferences (P3P) [29] - a W3C recommendation - aims to solve
this problem by supporting automatic analysis of privacy statements. P3P
allows enterprises to translate their privacy statements into a standardized
XML-based format, using a common vocabulary, to be placed on their web-
sites. When a website supports P3P, a visitor can employ an automatic tool
to analyze the website’s privacy statement and quickly decide if they are
satisfactory.

To illustrate how P3P works, let us see an example.

Example 18 (Online privacy statements) Alice visits an online store
and after choosing a product she goes to the checkout page. Here she fills out
a form with some private data: i.e. her name and credit card number. The
store states in a privacy statement that it will use these data only to complete
the transaction. In addition, the checkout form has a non-obligatory field for
the customer’s email address. The store states in a second privacy statement
that the data will be used by the insurance company for discount offers. Both
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<policies xmlns=’http://www.w3.org/2000/P3Pv1’>

1)<policy name=’checkout’

entity=’Store, 5th Avenue, Manhattan, PO 10001, USA’>

2) <disputes>service=’PrivacySeal.orG/DisputeResolution’</disputes>

3) <access><none/></access>

4) <statement>

<purpose><current/></purpose>

<recipient><ours/></recipient>

<retention><stated-purpose/></retention>

<data-group>

<data ref=’#user.name’/>

<data ref=’http://www.store.com/p3pvoc#card.number’/></data-group>

</statement>

<statement>

<purpose><contact required=’opt-in’/></purpose>

<recipient><ours/></recipient>

<retention><stated-purpose/></retention>

<data-group>

<data ref=’#online.email’/></data></data-group>

</statement>

</policy>

</policies>

Figure 12: A sample P3P policy

privacy statements can be translated in P3P and the resulting P3P policy,
containing the two statements, is shown in Figure 12.

The example allows us to see the different (XML) elements in a P3P
policy:

1. The policy element specifies a name for the policy, and the entity which
indicates the issuer of the policy.

2. The disputes element describes how possible conflicts over the privacy
policy may be resolved (e.g., by which court, or other entity). This is
not binding, in the sense that the enterprise is still subject to the legal
ways to resolving a privacy dispute.

3. The access element indicates whether the submitted data may be ac-
cessed by the subject after it has been collected. This can be used
for instance to verify the accuracy of the collected data. This policy
states that access is not possible.

4. The key elements of the P3P policy are the statements which describe,
per data item (the element data), for which purpose it is collected,
who is allowed to access it (in the recipient element), and for how long
it will be stored (in the retention element).
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• The purposes are respectively current, which refers to the online
purchase and contact, which indicates that the information can
be used to contact the user for marketing of services or products.
The purpose element may also contain an attribute indicating
how a user can express his consent to the purpose. In this case,
explicit opt-in is required for the purpose contact.

• The recipient value ours means that the data can only be accessed
by the store (e.g. it will not be given to third parties), while the
retention value stated-purpose means that the data will only be
retained for a period needed for the stated purpose.

• The data element is specified by a reference to
an element in a so-called P3P data schema, e.g.
#online.email, in P3P’s default data schema, and
http://www.store.com/p3pvoc#card.number, in the store’s
custom vocabulary.

In the example above, if Alice’s browser supports P3P it can compare
the policy with Alice’s privacy preferences automatically. One of these pref-
erences states that she wants to be warned when sites request information
for purposes other than current. In this case the browser, can notify her that
she may or may not supply her email address for marketing of services or
products. Her advantage is that she does not have to read the site’s privacy
statement to find out what they mean and which fields are optional.

Since its introduction in 1997, P3P has received considerable atten-
tion [43]. P3P adoption was particularly stimulated by the introduction
in 2001 of a privacy slider in Microsoft’s Internet Explorer 6. This privacy
slider allows the user to determine which websites may set and retrieve
cookies, according to their P3P policies. Cookies from websites with no P3P
policies (or with an unsatisfactory one) are blocked by the browser.

A drawback of P3P is that, despite its simplicity, P3P policies can be
ambiguous [91]. For instance, one could refer to the same data element twice
with different retention periods, within the same policy. Ambiguities may
result in legal risks for the issuers as their policies may be interpreted in
unexpected ways [80]. This also makes the development of P3P compliant
browsers more difficult. As a matter of fact, despite the fact that P3P
was designed to be interpreted by browsers, there is no definition of how
a browser should interpret policies, and there are no guidelines for writing
’browser-friendly’ policies [80].

We should mention that while P3P addresses the problem of representing
a website’s privacy policy, it does not address the problem of enforcing them.
The use of P3P alone does not give assurance about the actual privacy
practices in the backend of the website. Critics have even suggested that the
online industry, by adopting P3P, is only giving an appearance of protecting
privacy, to avoid stricter legislation [23].
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5.3 Platform for Enterprise Privacy Practices

As mentioned earlier, in many countries, legislation regulates the collection
and the use of private data. This requires enterprises to enforce privacy
policies that prescribe for example when certain data should be deleted, by
whom it may be accessed and for which purposes. As we saw in the previous
section, P3P can be used to represent such privacy policies on websites, but
it does not address the problem of enforcing them inside the enterprise.
The Platform for Enterprise Privacy Practices (E-P3P) - introduced in 2002
by Karjoth et al. - addresses this [53]. E-P3P provides an XML-based
language to express privacy policies as well as a framework with specific
privacy functionality to enforce these policies.

In the E-P3P architecture an enterprise collects private data at so-called
collection points. Here individuals, e.g. customers, submit private data to
the enterprise, after agreeing with the enterprise’s privacy statements. Each
collection point has a form which associates the private data with its subject,
declares its type, e.g. credit card or email address, and the subject’s consent
choices. This association remains intact in the enterprise’s backend and it
may even travel to another enterprise. In E-P3P this is called the sticky
policy paradigm [53]. The sticky policy does not refer to enterprise policies
but refers to the privacy statements and the filled in consent choices on the
data collection form that stick to the private data.

The privacy officer of the enterprise declares, by using E-P3P’s policy
language, who can access which type of data for which purposes. The pri-
vacy policy can also refer to the subject’s consent choices and to certain
privacy obligations, e.g. delete the data in 30 days. Operations in the en-
terprise’s applications are then mapped to terminology used in the privacy
policies, and vice versa. For example, the ’send’ operation of a mass-mailer
system, used in the marketing department, is mapped to the term read for
the purpose of marketing in the privacy policy. The term delete the subject’s
email in the privacy policy is implemented as an ’unsubscribe’ operation of
a mailing list system.

Finally, access to the private data of a subject is granted in two steps.
The access to the legacy enterprise application is evaluated by an access
control system, for instance taking into account employee roles, which is
independent of the E-P3P system. Then, the legacy application makes an
access request to a privacy enforcement system for the subject’s private data.
The privacy enforcement system decides whether access should be granted,
by evaluating the enterprise policy and by matching against the subject’s
consent choices. If access is granted, then the privacy enforcement system
also executes possible privacy obligations specified in the enterprise policy.

Example 19 (Enterprise privacy policies) Consider the previous ex-
ample of an online store collecting private data on its checkout page. The



5.3 Platform for Enterprise Privacy Practices 85

1) <ep3pPolicy version = ’1.2’ issuer = ’Store’

vocabulary-ref = ’http://www.Store.com/Voc’

2) default-ruling=’deny’>

3) <rule>

<dataCategory>allData.creditCardData</dataCategory>

<purpose>business.billing</purpose>

<userCategory>employees.billing</userCategory>

<ruling>allow</ruling>

<action>read</action>

<obligation action=deleteWithIn(30)</obligation>

<condition/>

</rule>

4) <rule>

<dataCategory>allData.contactData</dataCategory>

<purpose>business.marketing</purpose>

<userCategory>employees</userCategory>

<ruling>allow</ruling>

<action>read</action>

<obligation>

<condition>optInToMarketing=true</condition>

</rule>

Figure 13: A sample E-P3P policy

enterprise that owns the online store wants customers to trust its privacy
practices. To this end, it has published privacy statements on the checkout
page and uses E-P3P to ensure that enterprise systems, and employees, be-
have according to them. These privacy statements specify that Alice’s credit
card number may be accessed by the employees from the Billing department
provided that the purpose is billing and that the data is subsequently deleted.
In addition, employees may use Alice’s email, address for marketing pur-
poses, if Alice opted in to this purpose.

The corresponding E-P3P policy is shown in Figure 13. We go over
the details of this policy in the next paragraph. Now an employee of the
marketing department wants to send an email with promotions to a number
of customers (including Alice), by using a mass-mailing system. The mass-
mailing system, after checking that the employee is authorized to use the
system, sends a request to the E-P3P privacy enforcement system to see
whether access should be allowed on the basis of the enterprise’s privacy
policy. The request has the following form:

<ep3pQuery>

<userCategory>employees</userCategory>

<dataCategory>allData.contactData</dataCategory>

<purpose>business.marketing</purpose>

<action>read</action>

</ep3pQuery>
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The E-P3P policy enforcement engine (or reference monitor) decides
whether to grant this request or not, based on the E-P3P policy. Let us go
over the E-P3P policy of this example.

1. The top E-P3P policy contains the E-P3P version number, the name
of the issuer of the policy, the vocabulary used, and

2. the so-called default-ruling, which specifies the default decision that
should be taken, when no rule in the policy applies to the request.

3. The first rule contains elements that specify that reading creditcard
data, for the purpose of billing, provided the requester deletes the data
within 30 days.

4. The second rule allows requests for reading contact data of a customer,
for the purpose of marketing, provided the customer has opted-in to
marketing.

The E-P3P policy enforcement engine will allow the request and grant ac-
cess (allow) to the contact data, provided the condition optInToMarketing

holds. A request for creditcard data with the purpose billing would also be
allowed. Other requests would be denied (by the default-ruling deny).

This example shows the key elements of an E-P3P policy: a reference
to the vocabulary used, the policy’s default-ruling and the policy’s ruleset.
The ruleset is a list of E-P3P rules that declares which user categories can
perform which actions on which data categories and for which purposes.
The vocabulary allows one to define hierarchies of data categories, pur-
poses, and data users, which are convenient to refine a privacy policy in
a hierarchical sense. For example, the ruling ALLOW inherits downwards
in the hierarchies: When a rule allows a request for allData, then a re-
quest for allData.creditCardData is also allowed. Denials, on the other
hand, are inherited both downward and upward. For example if a rule
denies access to allData.creditCardData, then the requests for allData or
allData.creditCardData.cardType are also denied.

E-P3P was introduced by Karjoth et al. [53], while the full XML-based
language and semantics for E-P3P policies was defined by Ashley et al. [14].
EPAL [13], a language similar to (and derived from) E-P3P was submitted
by IBM to the W3C for standardization, has not yet been endorsed. EPAL
does not have some of the advanced features of E-P3P such as hierarchies
for obligations and conditions, or procedures for the composition of policies.
EPAL has been implemented by IBM in the IBM Tivoli Privacy Manager,
a system providing automatic management of private data to bring down
the enterprise’s costs of privacy management and to decrease the risks of
unauthorized disclosures.
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It is worth remarking that, although the names of E-P3P and P3P are
similar, they are used in different stages. One is used to manage privacy rules
internal to an enterprise, the other is used to communicate, in a standardized
way, privacy policies to internet users. Karjoth et al. [52] have linked the
two by proposing a system that publishes P3P policies directly from internal
enterprise policies. Yu et al. [91] on the other hand argue that P3P policies
should be more long-term promises, which should not change each time an
internal enterprise practice changes.

5.4 Audit-based Compliance Control

P3P and E-P3P offer methods for specifying privacy policies and enforcing
them inside an enterprise. The issue of protecting private data across en-
terprise boundaries remains open, however. This is an important problem,
given that outsourcing of business processes is increasingly common.

In this section we describe how AC2 provides an alternative approach to
privacy protection. AC2 does not only allow to specify privacy policies, like
P3P, it also provides a framework for auditing compliance to these policies.
AC2 addresses the issue of compliance to policies for data that move across
different security domains.

Example 20 (AC2 enterprise privacy policy) Let us return to the en-
terprise privacy policy of our previous example. It can be expressed as two
AC 2 policies, as follows:

φ1 =∀a,d1
(

employee.billing(a) ∧ purchaseorder(d1 )

→ mayRead(a, d1 , billing)
)

.

φ2 =∀a,b
(

employee(a) → (optin(a,marketing)
?→ maySend(b, a,marketing))

)

.

The policy φ1 states that employees at the billing department can read the
purchase orders, for the purpose of billing. Here the purpose is a parameter
of the predicate mayRead(). The action optin(a,marketing), in policy φ2

is a use-many obligation. The policy employee can send marketing content
to Alice if she has opted in to marketing.

When Alice makes her purchase, she posts a form with the ’agree to
marketing’ checkbox marked. The store logs her action:

act1: optin(Alice,marketing)

Now employee Charlie sends a marketing email to Alice.

act2: sends(Alice,marketing)
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The action is not, like in conventional access control, checked a-priori
against the store’s privacy policy, but Charlie can justify action act2,
a-posteriori, to an auditor in the enterprise, a by referring to Alice’s opt-in
(act1), and the store’s policy φ2.

In AC2 , compliance to policies is not enforced in a conventional way but
instead users may have to justify their actions a-posteriori, i.e. users may
be audited. By holding the users accountable for their actions afterwards,
policy violations are prevented by deterrence rather than by prevention. In
order to do this, auditors must dispose of meaningful (and tamper-proof)
audit trails. Such audit trails are already present in enterprises for the
purpose of accountability, and are also (though implicitly) assumed in the
P3P and E-P3P frameworks.

Suppose the enterprise has outsourced marketing mailings to a special-
ized marketing agency. When customer data leaves the security domain of
the store, it can not use conventional access control [50, 68, 76] anymore
to protect the data, since the access control system of the store does not
extend to the marketing outsourcing. Let us show how AC2 can be used in
such a setting.

Example 21 (Outsourcing) The enterprise Store has outsourced market-
ing to another enterprise called Marketeer. Instead of giving Marketeer a
list of email addresses of customers that have opted in to receiving mar-
keting, Store wants to keep track of how often customers receive mailings,
because they do not want to annoy them, and they want to know if additional
marketing is appropriate or not.

The enterprise Store has specified a privacy policy that Marketeer has to
comply to. The policy is as follows:

φ3 =∀a,b
(

notifies(Store,Marketing , a)!→ maySend(b, a,marketing)
)

An employee, Carol, of the enterprise Marketeer has just sent a marketing
mail to Alice, and notifies the Store that Alice was sent a marketing mailing:
act3: sends(Carol ,Alice,marketing)

act4: notifies(Store,Marketing ,Alice)
Carol logs act3 together with a reference to act4, indicating which (use-
once) obligation has been consumed. Suppose Store, or another entity,
wants to audit the enterprise Marketeer, Carol can justify act4 by using the
policy φ3, and an excerpt of her log containing act3.

The latter example shows an important advantage of using AC2 for enter-
prise privacy policies, as opposed to E-P3P, or a conventional access control
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mechanism. Even if the enterprise Marketeer uses E-P3P (or another con-
ventional access control system) to enforce the policy φ3, only the security
officer of Marketeer who implements E-P3P will acquire guarantees about
data-protection. The enterprise Store on the other hand can only hope that
the right E-P3P policies are in place, and that they are enforced continu-
ously, because the enforcement point is out of the control of Store. AC2 also
does not require, like traditional access control systems, a trusted enforce-
ment point that enforces compliance to policies. AC2 allows both enterprise
to adopt their own systems for data-protection.

Moreover AC2 allows multiple auditors to audit actions concurrently
and independently. This is in line with the common practice in which dif-
ferent stakeholders (such as internal auditors, customer organizations, and
corporate accounting bureaus) audit compliance to regulations, and policies,
independently of each other (for example, at different times, and targeting
different actions).

A drawback of AC2 is that misuse is not prevented but only deterred.
Compliance to policies is only checked a-posteriori by the auditing author-
ities. This implies that all the users of the system are auditable and that
complete audit trails are available to the auditors. This fits well with e.g. hos-
pitals or enterprises, where users, can be held accountable for their actions
and audit trails are often already part of the (security) requirements. It may
be hard to realize these requirements in more open settings. Alternatively,
instead of using the audit trails inside the enterprise, one could use external
audit trails, for example by asking users directly to supply evidence of a
postal mailing or a received call.

5.5 Related Work

An extensive survey of social, legal and technical aspects of P3P was given by
Hochheiser [43]. In a more technical approach, Yu et al. [91] investigate the
semantics of P3P: they find several inconsistencies and show how to restrict
the language to avoid them. Byers et al. [22] survey the use of P3P on a large
number of websites. They argue that a large number of websites is not com-
pliant with the P3P specifications, and that this may yield legal problems for
these websites. The P3P Preference Language (APPEL) [28] was developed
by Cranor et al. to allow users to express preferences about P3P policies.
With APPEL, users can specify which P3P policies they find acceptable and
which not. Yu et al. [91] develop another kind of P3P preference language.
This approach is based on the semantics of P3P, unlike APPEL, which is
based on the syntax of P3P. Related to P3P is the Resource Description
Framework (RDF) [57]. RDF was developed to represent information on
the web in a machine-readable format. Although it is not specifically in-
tended to be used for privacy practices, it may be used to express P3P
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policies. RDF has been proposed as an alternative for APPEL [28].

E-P3P is an extension of Jajodia et al.’s Flexible Authorization Frame-
work (FAF) [49]. Like in E-P3P, FAF provides a policy language that can
specify both positive and negative authorizations and uses hierarchies for
objects and users. However, FAF does not allow the use of obligations, and
does not include a special construct to express the purpose of an access re-
quest. The notion of privacy obligations in E-P3P is similar to the provisions
in Jajodia’s Provisional Authorization Specification Language (pASL) [48].
In pASL a principal is granted access to an object if it causes certain condi-
tions to be satisfied. In E-P3P, obligations are treated opaquely, as methods
that are called and return a value, while in pASL obligations are treated
more in detail by using a temporal logic. E-P3P shares some similarities
with XACML [66], an OASIS standard for access control systems. XACML
is XML-based and uses object and data hierarchies, as well as conditions
and obligations. XACML is also inspired by FAF [49], and, although it is
not specifically intended for enterprise privacy policies, it can be used for
protecting private data inside an enterprise. As an example of this a pol-
icy for the protection of medical records is shown [66]. Although XACML
does not have a special purpose construct, like the one in E-P3P, it has
been added in XACML’s so-called privacy profile. Anderson [10] compares
EPAL [13] and XACML and concludes that EPAL corresponds mostly to
a subset of XACML and that it lacks certain features required for access
control and privacy. Stufflebeam et al. [82] present a practical case study
of E-P3P and P3P. Here the authors implement a number of health care
policies in both EPAL and P3P. Among other things, they conclude that
many promises expressed in natural language privacy policies are neither
expressible in P3P nor enforceable with EPAL. More closely related to the
AC2 policies, Originator Control (ORCON) policies [67] were introduced as
an alternative for discretionary and mandatory policies. In ORCON policies,
the original owner of the data can always change the access rights on the
data, while the current owner of the data can not do so. This fits well with
the privacy regulations in which the subject should retain control over its
personal data [83]. ORCON however stores policies centrally, whereas AC2

allows policies to be communicated between users and systems.

5.6 Conclusions

In the P3P system, privacy statements are formatted using XML and a
common vocabulary, to allow for automatic analysis of the statements. P3P
is well-established, in the sense that there are many popular websites that
use P3P [22]. Also there are a number of tools that generate natural language
statements from P3P statements [43]. A drawback of P3P is that it does not
distinguish between different types of access. For example, it is impossible
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to specify that certain employees may update personal data, while others
may not. This makes it cumbersome to use for access control inside an
enterprise.

The E-P3P system addresses this. E-P3P distinguishes between different
types of access and enables the use of obligations and conditions. Although
E-P3P itself is not (yet) an endorsed standard, it corresponds to a subset
of an OASIS standard, i.e. the XACML access control language [66]. In
a way they are complementary because E-P3P assumes the existence of ac-
cess control policies, independent of the privacy policies. E-P3P policies
can contain prohibitions, i.e. rules that deny access, which makes the lan-
guage more expressive than the AC2 policy language. However it seems
complicated to move E-P3P policies from one enterprise to another. The
new policy may cause conflicts and it may even be bypassed altogether due
to other policies that are incompatible [15]. Moving policies may be needed
in enterprise collaborations where private data are exchanged, guarded by
policies. Furthermore, the use of E-P3P can only give assurances to other
enterprises, when they assume that the enterprise is trusted to implement
E-P3P correctly [53]. This may be a too strong assumption in the setting
where enterprises dynamically form coalitions to exchange private data.

In AC2 this assumption is relaxed. Here it is assumed that the enter-
prise can misbehave, while compliance to privacy policies can be verified by
(external) auditors, through a formal auditing procedure. AC2 is designed
for a distributed setting, and it is easy to move policies across enterprise
domains for instance accompanying private data. When policies are sent
from one enterprise to another, the question is raised whether one can trust
the sender of the policy. For example, a rogue enterprise could be set up
for the purpose of distributing fake customer consent statements to other
enterprises. To address this problem one could extend AC2 with a trust
management system to facilitate trust decisions about the sources of poli-
cies. Etalle and Winsborough show how AC2 could be combined with the
trust management language RT [32]. Furthermore, it may be interesting to
couple the reputation of enterprises to the outcome of past audits, like in
reputation-based systems [81].
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Part II

Extending Role-based Access
Control





Introduction

In the first part of this thesis we have proposed AC2, a new framework
for specifying and enforcing discretionary access control policies. We have
shown by giving examples, how AC2 can be used in different types of dy-
namic collaborative environments where private data is collected and pro-
cessed. At the same time we are aware of the fact that changing to a new
access control paradigm represents a big step for any organization, and that
AC2 is not likely to be adopted as-is by e.g. hospitals. In Part II of this
thesis we take a more evolutionary approach to designing a flexible access
control system more suitable for dynamic collaborative environments: We
extend an existing, widely deployed, access control model (RBAC), to make
it more suitable for dynamic collaborative environments.

Role-based Access Control (RBAC) [11] is a well-known standard for
access control, used in many different organizations. To see an example,
let us go back to the simple collaboration in the introduction, where the
peers Alice, Bob and Charlie cooperate to produce a certain (confidential)
document. Suppose that Alice, Bob and Charlie work in organizations
where RBAC is used for the protection of documents. Suppose the RBAC
policy is as follows.

alice bob

charlie
roleX

roleY roleZ

(read ,file)

Alice, like before, wants to benefit from Bob’s help, but Bob does not
have access to file. Alice would like to give Bob access to the document.
RBAC however, does not allow Alice to make changes to the policy. Alice
must therefore talk to an administrator to obtain a policy change, which
is time-consuming for Alice, and discourages (ad-hoc) collaboration. In
such a scenario it is tempting for Alice to show the document to Bob, and
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Charlie in a way that circumvents the access control system (for example
by using a USB stick, or by sharing her password). Ideally one would like
to extend RBAC here, in such a way that it allows Alice to make a certain
policy changes (the dashed edge depicted below).

alice bob

charlie
roleX

roleY roleZ

(read ,file)

Now, suppose Charlie works in a different branch of the organization, on
a different system than Alice, or even in another organization. The RBAC
standard does not specify how to deal with policy changes across different
systems. One would like to have a model that specifies how to update the
system used by Charlie, in such a way that Charlie, after the policy change
by Alice, gets access to the documents.

A number of researchers have recently proposed RBAC extensions to
allow delegation and decentralization of administrative authority [17, 27, 34,
78, 93]. We make two contributions to contribution to this line of research
in Chapters 6 and 7.

• In Chapter 6 we define a new administrative model for RBAC, that
gives more flexibility to the users than existing proposals - without
being less safe. This kind of flexibility allows users to change policies
better according to the day-to-day practical needs. We propose a for-
mal definition of administrative refinement and define an ordering on
the administrative privileges in RBAC. We also show that the privilege
ordering is decidable.

• In the Chapter 7 we propose a model for the administration of RBAC
in a distributed system and propose an administration procedure sup-
porting the principle that different systems protect different sets of
objects. We demonstrate that our administration procedure fulfills
formal requirements deriving from safety and availability, and we show
how it can be translated to a practical implementation. Finally, we
extend the model to multiple decentralized administrative systems.

Remark 6 (RBAC versus AC2) Let us conclude this intermezzo by dis-
cussing the most striking differences between RBAC and AC 2 .

1. In RBAC, access control decisions are made the moment a user re-
quests access. In AC 2 on the other hand user requests are always
granted, but justifications can be requested later on by an auditor.
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2. The policy language used in RBAC is less expressive than the policy
language of AC 2 . The RBAC policy language is an instance of propo-
sitional logic, while AC 2 is based on first-order predicate logic. For
instance AC 2 policies can contain conditions, or obligations that can
not be expressed in RBAC. On the other hand, RBAC is decidable,
which is important because the RBAC reference monitor must make
access control decisions on the fly.

3. RBAC does not allow ordinary users to change or deploy policies, like
in the AC 2 framework. In RBAC the policy can be set, and changed
only by system administrators.
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Chapter 6
Refinement for Administrative
RBAC Policies

6.1 Introduction

Role-based access control (RBAC) [11] is a well-known standard for access
control, devised to make the assignment of users to privileges easy. In prac-
tice however, for example in hospitals or enterprises, RBAC policies can
be large and dynamic, consisting of thousands of roles [34], and changing
frequently. In such cases policy management can be a daunting task. The
obvious approach to this problem is to divide the work and to delegate (bits
of) administrative authority to other users. The advantage is that other
users can adapt the access control policy to changing circumstances more
easily, reducing administrative bottlenecks. Not only does this reduce the
cost of maintaining the access control policy, it also avoids dangerous prac-
tices, such as sharing passwords or keys that should really remain secret. For
example, it may be convenient to allow the head nurse to delegate database
access to other nurses when they need it for particular tasks, without having
to refer back to the hospital security officer. On the other hand, this kind
of flexibility also introduces security risks, because users make the wrong
changes to the RBAC policy.

The issue of designing flexible yet safe policy administration mechanisms
for RBAC has received considerable attention recently [17, 27, 34, 78, 93].
To mention some of the research: In ARBAC [78] administrative privileges
are assigned to a separate hierarchy of administrative roles and defined by
specifying a range of roles that can be changed. Crampton and Loizou [27]
take a more general approach, by using the same hierarchy for both adminis-
trative privileges and ordinary user privileges. Using the concept of admin-
istrative scope, they define which roles should have administrative privileges
over other roles. In a similar approach, Wang and Osborn [88] divide the
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role-graph (a type of RBAC policy) into administrative domains. Each ad-
ministrative domain has one administrator with privileges about the (roles
in the) domain. In the Role-Control Center [34], administrative privileges
over roles are defined in terms of views, which are subsets of the role hi-
erarchy, and they can only be assigned to users that are assigned to these
roles. There seems to be no consensus (yet) about which administrative
privileges belong to which roles; each of the above mentioned frameworks
differs on this issue. Some models motivate their choice by considerations
that include the meaning of a role in a company, or the concepts of owner-
ship, and responsibility, as one would find it in a company. On the other
hand, Li et al. argue that interpreting the RBAC role hierarchy as a busi-
ness organization chart can be misleading [58]. To give a simple example, in
a business organization chart it is common to place the business manager on
top. If we interpret this as an RBAC role hierarchy this would imply that
the business manager can play all the roles in the organization, and conse-
quently acquire all privileges. This is often inappropriate. For example, a
hospital’s manager typically does not perform medical operations, nor does
she have the privileges of doctors, although the manager tops the doctors in
the hospital’s organization chart.

This chapter is a contribution to the above-mentioned lines of research on
management of RBAC policies. We introduce the concept of administrative
refinement, which is a relation on the set of administrative policies. Basically,
an administrative refinement of a policy allows the same or fewer users to
perform the same or safer administrative actions, as the policy itself. The
safer administrative actions yield policies where users have fewer privileges.
We use the concept of administrative refinement as a foundation for an
ordering on the administrative privileges. We give the formal proof that
the ordering is decidable, and how it can be used in an RBAC reference
monitor to allow for an administrative RBAC model which is more flexible
and more safe. In this chapter we will not assume any features that go
beyond the General Hierarchical RBAC model (like constraints), which is
the most commonly used RBAC model. In this way, our results can be used
in wide a range of different RBAC models [17, 27, 34, 78, 93] that are based
on the General Hierarchical RBAC model.

6.2 Preliminaries

We first introduce briefly the General Hierarchical RBAC model, as defined
in the ANSI RBAC standard, because it is the most commonly used RBAC
model [11, 34]. In Section 6.3 we extend this model with administrative
privileges, yielding a general class of administrative policies.

The goal of an RBAC policy is to specify which users are permitted to
perform which actions on which objects. The standard assumes the existence
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of a set names for users, U (ranged over by u, u′,. . . ), a set for roles R (ranged
over by r, r′, . . . ), for actions A and for objects O. Privileges in RBAC are
permissions to perform actions on objects (being data or other resources).
The privileges form a set P ⊆ A×O (ranged over by p, p′), (read , table1),
(print , colorA4 ). We refer to these privileges as user privileges (as opposed
to the administrative privileges, that will be introduced below).

A standard RBAC policy is a triple (UA,RH ,PA), where UA ⊆ U ×R,
RH ⊆ R×R, and PA ⊆ R× P . The set of policies is denoted Φ. For the
sake of brevity we treat φ ∈ Φ as a single directed graph (a single set of
edges UA ∪ RH ∪ PA).

Contrary to the RBAC standard, we do not require that the RH relation
is transitive, or that the graph of the RH relation is acyclic.

We believe that the transitivity requirement complicates administration
unnecessarily, in agreement with Li et al. [58]. Let us give an example.
Suppose that the doctor role inherits the nurse role, and the nurse role a
number of small roles (for tasks e.g.). Transitivity requires that the doctor
role is also assigned to each of the roles of the nurses. Now if the tasks of the
nurse change, not only the nurse role must be changed but also the doctor
role.

Cycles in RBAC policies are sometimes considered to be redundant, but
there are no strong reasons for excluding such policies.

Definition 7 (RBAC Policies) Let U , R, and P be sets of users, roles,
and user privileges, an RBAC policy φ is a tuple

φ = (UA,RH ,PA),

where UA ⊆ U ×R determines which users are member of which roles,
RH ⊆ R×R determines which roles are assigned to other roles, and
PA ⊆ R× P determines which roles have which privileges.

The set of RBAC policies is denoted ΦU,R,P . To simplify our exposition we
treat a policy φ as a directed graph, defined by the set of directed edges
UA ∪RH ∪ PA. If there is a path from one vertex v to another v′ we write
v →φ v

′. Below we sometimes omit the subscript φ when the policy is clear
from the context.

The RBAC reference monitor uses the policy φ as follows. Any user u
can start a session [11]. The reference monitor allows the user to activate a
role r in a session iff. u→φ r. The privileges of the user’s session are all the
privileges q ∈ P such that r →φ q for some role r activated in the session.
A session can be regarded as a new temporary user with temporary assign-
ments to roles (the active roles in the session). Sessions are an important
safety mechanism, allowing users to apply the principle of least privilege. In
the sequel however, for the sake of simplicity, we ignore the details about
sessions and assume that users always activate all their roles.
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nurse

doctor
alice

bob

printusr

(print , color )

(print , black )

dbusr 3

dbusr 2

dbusr 1

(read , table3)

(read , table2)

(write , table3)

Figure 14: Example of a standard (ANSI) RBAC policy.

The user acquires the privileges of his own role, but also the privileges
of the roles r′ such that r →φ r

′ (the roles ’below’ r). This is known as
privilege inheritance and it is a well-known feature of ANSI RBAC.

Remark 7 (Privilege inheritance) Inheritance distinguishes RBAC
from other mandatory access control systems, such as the Bell-LaPadula
model, where certain write privileges are assigned to low roles, but not
inherited by users with high roles.

We conclude the preliminaries by giving an example of a standard RBAC
policy.

Example 22 (Standard RBAC) Consider the setting of a hospital,
where a database system dbms stores electronic health records in a num-
ber of tables table1, table2, table3 etc. The health records can only be seen or
changed by authorized personnel.

Charlie, the security officer of the hospital, uses RBAC for access control
in the dbms. The policy is depicted in Figure 14. It allows Alice to activate
the role nurse and the role staff. As a nurse she can only read the tables
table2 and table3, while as a doctor she can also write in the table table3.

6.3 Administrative Policies

The RBAC standard specifies a number of administrative functions and con-
trols, which can be used by an administrative authority to make policy
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changes [11]. Here we express administrative authority in terms of admin-
istrative privileges to model which users (or roles) can make which policy
changes. There are two types of privileges: privileges for making new edges
(denoted here by �), and privileges for removing edges (denoted here by ♦).
We assign the administrative privileges to roles just like the user privileges
are assigned to roles in standard RBAC. This approach is also advocated in
the literature and the intuition behind it is that the RBAC policy can also
be used to specify who can change the RBAC policy [27, 88]. The literature
focusses on defining constraints on which roles can have which administra-
tive privileges. For example, to prevent low roles from obtaining privileges
about higher roles [27]. Here we do not make choices with respect to such
constraints.

Administrative privileges are an infinite set, even if we assume that the
sets of users, roles and user privileges are finite. The reason is that ad-
ministrative privileges over administrative privileges are also administrative
privileges. For example, consider the privilege to give someone else the priv-
ilege to change the members of a role. The number of administrative levels
(the number of nestings of the � connective to be introduced below) is often
restricted in existing literature (sometimes to one [79] or to two levels [93]).
We agree that in some settings multiple levels of administration are not use-
ful. In practice the security officer of the organization could fix a bound on
the number of administrative levels, depending on the needs of the organi-
zation. However, here we prefer to take a general approach, leaving it up
to security officers to choose which administrative privileges to use in their
systems.

We formalize the full set of privileges by defining a grammar that en-
compasses both user privileges and administrative privileges.

Definition 8 (Privilege Grammar) Let U , R, P be sets of users, roles
and user privileges, the set of all privileges P ∪ P ◦ is defined by the following
grammar:

p ::= (o, a) | �(u, r) | ♦(u, r) | �(r, r′) | ♦(r, r′) | �(r, p) | ♦(r, p).

where u ∈ U , r, r′ ∈ R, and (o, a) ∈ P .

Each administrative privilege corresponds to an administrative command
in a straightforward way (see the definition of administrative commands
below). For example, the privilege �(u, r) allows to add a member u to the
role r. The privilege ♦(u, r) allows to remove a member u from the role r.

We do not model privileges to change the sets U , R, or P , and we
assume that they are chosen sufficiently large and fixed. The rationale is
that changes to U , R, or P do not actually change the policy, rather they
change which policies are well-formed. For example, in practice the set of
users U could be defined as all strings starting with ’uid’. Independent of
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the fact that at any time only a limited number of users is assigned to roles
in the RBAC policy.

In the administrative privilege grammar, � and ♦ are connectives and
the set P ◦ is infinite. (Even if the sets U , R, P are finite.) For example, one
could have an expression �(r,�(u, r′)), which expresses the privilege to give
to role r, the privilege to assign user u to the role r′. We can now define
administrative policies.

Definition 9 (Administrative Policies) Let U , R, P be sets of users,
roles and user privileges, an administrative RBAC policy φ is a tuple

φ = (UA, RH , PA◦),

where UA ⊆ U ×R are the user assignments, RH ⊆ R×R is the role order-
ing, and PA◦ ⊆ R× P ∪ P ◦ are the assignments to user or administrative
privileges.

The set of administrative policies is denoted Φ◦
U,R,P , which is a superset of

the policy set ΦU,R,P from standard RBAC (see Definition 7). Let us give
an example of an administrative policy.

Example 23 Let us return to Charlie, the security officer of the previous
example. Charlie wants to delegate some of his administrative authority to
the employees of the Human Resource department (HR). He would like HR
to appoint new staff members or nurses directly, without having to refer to
Charlie each time. Charlie uses an administrative policy to give administra-
tive privileges to other users. Figure 15 shows the policy: Members of HR
can assign any user (denoted by ∗) to staff and nurse roles, and they can
revoke users from the nurse role.

Additionally, to protect the confidentiality of health records in the tables
table2, and table3 Charlie has given a revocation privilege about the role
dbusr 3 to the role dbusr 1. The administrative policy hence not only describes
who can access which resources, but also which roles have privileges to change
the policy itself.

Our model does not require that administrative privileges be assigned to
separate parts of the policy. They can be assigned to roles just as ordinary
privileges.

Administrative policies allow users to make policy changes. We model
this formally by defining a set of administrative commands. We write �
and � to denote assignments and revocations, respectively. As mentioned
when introducing our definition of administrative privileges, we do not model
changes to the sets U , R, and P , as we assume they are sufficiently large.

Definition 10 (Administrative Commands) Let U , R, P , be sets of
users, roles and user privileges, the administrative commands form a set

{�u(u
′, r) | �u(u

′, r) | �u(r, r
′) | �u(r, r

′) | �u(r, p) | �u(r, p)}
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printusr

(print , color )

(print , black)

nurse

doctor

dbusr 3

dbusr 2

dbusr 1

(read , table3)

(read , table2)

(write , table3)

HR

HRSO

�( ∗, staff )

�( ∗, nurse)

♦( ∗, nurse) ♦( ∗, dbusr2)

Figure 15: An administrative RBAC policy, deployed by Charlie, the secu-
rity officer of the hospital.

where u, u′ ∈ U , r, r′ ∈ R, and p ∈ P ∪ P ◦.

For example, the command �u(u
′, r) denotes that user u assigns user u′ to

the role r. We illustrate this definition with a basic example: Consider a
policy containing the edges (u, r) and (r,�(r, r′)), as depicted in Figure 16.
This policy allows user u to add an edge from role r to role r′, i.e. it allows
the command �u(r, r

′).

�u(r, r
′)

u

r

�(r, r′)

u

r

�(r, r′) r′

Figure 16: An administrative policy and an administrative action.

A command queue is a list of administrative commands. The set of
command queues is denoted CQ . The empty command queue is denoted
ε, and the list constructor is denoted :. The administrative functionality
of the RBAC reference monitor is modeled by a command queue, and an
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administrative RBAC policy. The RBAC reference monitor changes the
policy by executing administrative commands in the command queue. We
formalize this by a transition function.

Definition 11 (Administrative Transition) Let cq ∈ CQ be a com-
mand queue, and φ ∈ Φ◦ an administrative policy, the administrative tran-
sition function, denoted ⇒: CQ × Φ◦ → CQ × Φ◦, is

〈�u(v, v
′) : cq , φ〉 ⇒ 〈cq , φ ∪ (v, v′)〉, if u→φ �(v, v′).

〈�u(v, v
′) : cq , φ〉 ⇒ 〈cq , φ \ (v, v′)〉, if u→φ ♦(v, v′).

If an administrative command is not allowed by the policy φ, then the
command is removed from the queue, without changing the policy φ. Below,
a sequence of executions of commands in the queue is called a run, denoted
by ⇒∗.

6.4 Administrative refinement

In existing literature [17, 27, 34, 78, 93], administrative privileges for RBAC
policies are treated just like ordinary user privileges (without taking into
account that they allow for policy changes). In this section we show that a
different approach that is more flexible yet safe. First we formalize the notion
of administrative refinement. In section 6.4.1 we show that administrative
refinement yields an ordering for the administrative privileges for assignment
(�), and in section 6.4.2 we show how the privilege ordering can be used
practically in an RBAC reference monitor, and we show that the privilege
ordering is decidable.

Ignoring administrative policies for the moment, an RBAC policy ψ is
safer than a policy φ, if ψ grants users fewer privileges than φ does. In access
control this is sometimes referred to as refinement (see for example [14]) . We
call this non-administrative refinement, to distinguish it from administrative
refinement to be introduced below.

Definition 12 (Non-Administrative Refinement) Let φ,ψ ∈ Φ◦ be
two RBAC policies. We say that ψ is a non-administrative refinement of φ,
denoted φ � ψ, iff for any v ∈ U ∪R and any user privilege p ∈ P , v →ψ p
implies v →φ p.

We give a basic example to illustrate this definition.

Example 24 (Refinement) In general, by removing edges from an RBAC
policy one obtains a safer policy, hence a refinement. Consider for example
the (non-administrative) RBAC policy depicted in Figure 14. By removing
Diana from the staff role one obtains a refinement.
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There are other more fine-grained type of refinements. For example, if
we replace the edge between Diana and staff with an edge between Diana
and nurse, then one also obtains a refinement according to Definition 12.
On the other hand, if we replace the edge between nurse and dbusr1 with
an edge between nurse and dbusr2, we do not obtain a refinement, as nurses
get more privileges.

We can now define administrative refinement. The goal of an adminis-
trative policy is to allow certain policy changes. Basically, an administrative
refinement of a policy is a policy that allows safer policy changes. Policy
changes made by one user may allow other users to make new policy changes,
and so on. Therefore, we must take into account which users are perform-
ing administrative actions, and in which order. We formalize administrative
refinement as follows.

Definition 13 (Administrative Refinement) Let φ,ψ ∈ Φ◦ be admin-
istrative RBAC policies. We say that ψ is an administrative refinement of
φ, denoted φ �◦ ψ, if, for any queue of administrative commands cq ∈ CQ,
there is a queue of administrative commands cq ′ ∈ CQ, such that φ′ � ψ′,
where 〈cq , φ〉 ⇒∗ 〈ε, φ′〉, and 〈cq ′, ψ〉 ⇒∗ 〈ε, ψ′〉, and cq ′ is such that, it
contains the same number of commands, and the n-th command in cq and
the n-th command in cq ′ is also performed by u, where n ranges over the
number of commands in the queue cq.

The definition states that, if ψ allows a certain policy change then either the
same policy change is also allowed by the policy φ, or it is a policy change
that results in a safer policy. It is easy to see that administrative refinement
implies non-administrative refinement; take cq = cq ′ = ε. In other words, if
φ �◦ ψ holds then also φ � ψ holds.

Remark 8 (Safety in the HRU model) In the HRU model [42] it is as-
sumed that there is a group of untrusted users who can collude in any order.
Taking into account the order, like we do, is more precise, in the sense that
in the HRU model one can not distinguish the policy

(

lowrole → �(r, p)
)

from
(

highrole → �(r, p)
)

, while the latter is more safe.

6.4.1 Ordering administrative privileges

In this section, we introduce a privilege ordering on administrative privileges
and then we show that this ordering yields administrative refinements in
RBAC. At the end of this section we show how the privilege ordering can
be used in practice to allow more flexible RBAC administration.

Consider a simple setting where a sub-administrator has the explicit
right to assign a user u to a high role in the role ordering. There is no
reason to forbid the sub-administrator to assign the user to a lower role.
This can be seen as follows. If u becomes a member of the high role, then u
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Figure 17: The right to add the dotted edge follows (implicitly) from the
right to add the dashed edge. The corresponding ordering relation, given a
policy φ, is denoted with  φ.

can activate also the lower roles and obtain their privileges, as if u was as-
signed to it explicitly. In existing RBAC literature administrative privileges
are not interpreted in this way. For example, in Figure 17a, if the policy
includes the edge from r1 to r2, that is, r1 is a higher role than r2, then
the (administrative) privilege to assign user u to role r1 (the dashed edge)
yields the privilege to assign user u to role r2. It is safer to use the latter
privilege instead, because user u will be assigned to a lower role, and hence
have fewer privileges. The six figures show the different base cases of the
ordering on the administrative (assignment) privileges. Let us define the full
ordering relation formally. When one administrative privilege p yields an-
other administrative privilege p′, denoted p φ p

′, we say that p is stronger
than p′, and p′ is weaker than p. Intuitively, administrative policies with
stronger administrative privileges are less safe, than administrative policies
with weaker privileges. We will formalize the ordering relation as follows.

Definition 14 (Privilege Ordering) Given an RBAC state
〈UA,RH ,PA〉, let q be a privilege in P , and p1, p2 privileges in P ∪ P ◦,
and let r1, r2, r3, r4 be roles in R. The relation  is defined as the smallest
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relation satisfying:

q  φ q, if q ∈ P (6.1)

�(u, r1) φ �(u, r2), if r1 →φ r2, (6.2)

�(r1, r2) φ �(u, r3), if r2 →φ r3 and u→φ r1, (6.3)

�(r2, r3) φ �(r1, r4), if r1 →φ r2 and r3 →φ r4, (6.4)

�(r2, r3) φ �(r1, p2), if r1 →φ r2, r3 →φ p1, and p1  φ p2, (6.5)

�(r2, p1) φ �(r1, p2), if r1 →φ r2 and p1  φ p2, (6.6)

where p1 in line 5 is an arbitrary privilege such that r1 →φ p1 holds.

The ordering is both reflexive and transitive, because the premises in the
definitions of Definition 14. In practice the privilege ordering can be used
to allow users, with administrative privileges, to be implicitly authorized for
weaker administrative privileges.

It can be shown (see the Theorem 3 below) that by replacing an ad-
ministrative privilege by a weaker one (with respect to the ordering), one
obtains an administrative refinement of the policy. In other words, giving
administrative users also the weaker administrative privileges allows them
to perform also safer administrative operations than the ones originally al-
lowed.

Theorem 3 (Ordering and refinement) Let φ ∈ Φ◦ be an administra-
tive policy, let (r, p) ∈ φ be a privilege assignment, and let p′ be a privilege
such that p φ p

′, then the policy ψ = (φ\(r, p))∪(r, p′) is an administrative
refinement of φ, that is φ �◦ ψ.

Proof 3 The proof is by induction over the structure p′, i.e. the number of
nestings of �. The base cases are when p′ contains one or fewer nestings of
�.

Let us go over the base cases. If the first rule applies, then p′ is a
user privilege from P . The theorem holds trivially, since the relation �◦ is
reflexive. For the second rule of Definition 14, take a policy φ where r1 →φ r2
and (r,�(u, r1)) ∈ φ for some role r. Let ψ be the same policy except for the
privilege assignment (r,�(u, r1)) ∈ φ which is replaced by (r,�(u, r2). We
have to show that φ �◦ ψ: The policy φ allows the command

�.(u, r1),

which changes φ to φ′ = φ ∪ (u, r1), while ψ allows the command

�.(u, r2),

which changes ψ to ψ′ = ψ ∪ (u, r2). To show that φ �◦ ψ it suffices to
show that φ′ � ψ′: In ψ′ u has the privileges of r1, but in φ′ u has the same
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Figure 18: A practical example of the use of administrative refinement.

privileges, due to the edge r1 →φ r2. Hence, the policy ψ is a refinement of
the policy φ. The cases where the rules 3 thru 6 apply are proven similarly.

For the induction step, let p′ be an administrative privilege of the form
�(r, p′′′) where p′′′ ∈ P ∪ P ◦ (i.e. a privilege with n ≫ 1 nestings of �).
Either rule 5 or 6 of Definition 14 can apply. Let us go over the first case
(rule 5) here. Take a policy φ and privilege p′′, such that r1 →φ r2, r3 →φ p

′′,
p′′  φ p

′′′ and (r,�(r2, r3)) ∈ φ. Let ψ be the same policy, except that the
privilege assignment (r,�(r2, r3) is replaced by (r,�(r1, p

′′′). We have to
show that φ �◦ ψ. The policy φ allows the command

�.(r2, r3),

which changes φ to φ′ = φ ∪ (r2, r3), while ψ allows the command

�.(r1, p
′′′),

which changes ψ to ψ′ = ψ ∪ (r1, p
′′′). In the policy ψ′ the role r1 has the

privilege p′′′, while in the policy φ′ the role r1 has privilege p′′. By induction
hypothesis, since p′′′ is structurally smaller than p′ (i.e. with n− 1 nestings
of �), the policy ψ′ is an administrative refinement of φ′. The case where
rule 6 of Definition 14 applies is proven in a similar way.

Let us give an example of how the privilege ordering can be used in a
practical situation.

Example 25 (Contractor) Bill arrives at the hospital and his job is to
put some order in the health record database. To do the job he needs to get
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dbusr2 privileges. Anna, an employee of the HR department, can give the
necessary clearance to Bill (and add the dashed edge in Figure 18). However
she must urge Bill to apply the principle of least privilege, by activating only
the role dbusr2, and not e.g. the doctor or the nurse role, which would yield
excessive privileges. But Anna can only hope that Bill does so.

The privilege ordering implies that Anna can assign Bill directly to the
dbusr2 role (the dotted edge in Figure 18) because of her privilege to assign
Jack to the doctor role. In a way, Anna, instead of hoping that BIll applies
the principle of least privilege and does not take privileges that are not needed
for his duties, she applies it herself.

Here we have defined a policy to be safer when the policy gives users
fewer privileges. The principle of least privilege, and the way it is supported
by the RBAC session mechanism, is a well-known example of the usefulness
of this definition.

Remark 9 (Non-monotonic design) One could perhaps argue that there
could be practical situations where having fewer privileges is not more safe.
For example one could imagine a privilege to append to a log file. Removing
this privilege could cause programs to run unsafely, that is without writing
logs. We depicted such a policy in the figure below: The administrator can
assign some user named program to a role named scripts that has two priv-
ileges: for execution of a script and for writing the log. Assigning program
directly to (run , script) could cause the program to run unsafely.

program

scripts

(write, log)(run, script)

One could address such issues at the application layer, for example by
changing the program so that it halts when no logs can be written. Alter-
natively, one could extend our model to prevent this: Assume we mark this
privilege. The definition of the privilege ordering can now be extended with
a side-condition that takes these marks into account, such that the privilege
(run, script) cannot be assigned separately.

Remark 10 (Ordering revocation privileges) Our privilege ordering
does not include revocation privileges, ♦. Unlike with assignment privileges,
safety considerations can not be used to establish refinements of revocation
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privileges. From the point of safety, there is no need to even model revo-
cation privileges. Every revocation makes the policy more safe. From the
viewpoint of availability, however, revocations privileges should not be given
to all users. So one could use availability consideration to extend the privi-
lege ordering also to revocation privileges. We sketch the idea briefly:

From the viewpoint of availability revoking all edges directed to a vertex
v is equivalent to removing all edges directed from the vertex v. Therefore, if
a user can revoke all edges directed to a vertex v, then she can also remove
any of the edges directed from the vertex v. Vice versa, if a user can revoke
all edges directed from a node v, then she can also revoke any of the edges
directed to the vertex v.

We do not pursue this idea further, because it leads to a definition based
not on the presence of certain edges (assignments) in a policy, but on the
absence of edges. This would have a profound impact on our model. RBAC
does not allow to specify the absence of an assignment. Also checking that
assignments are absent requires special care (particularly in distributed set-
tings), and finally it is not clear how future assignments should be dealt
with.

6.4.2 Decidability

In this section we address an important practical issue. We prove that
the ordering relation (Definition 14) is decidable. Since the full set P of
privileges is infinite, this result is not immediate. For instance, a naive
forward search does not necessarily terminate (see the example at the end
of this section). The proof indicates how a decision algorithm, deciding
which privileges are to be given to which roles, can be implemented at an
RBAC reference monitor.

Lemma 1 (Decidability of the Ordering Relation) Given an
RBAC state S, and two privileges p, p′, it is decidable whether p p′.

Proof 4 The proof is by structural induction over p′, i.e. the number of
nestings of �.

The base cases are when p′ has one or fewer nestings of �. We show
that for these base cases p p′ is decidable:

• Either p′ is a user privilege from P . In this case p  p′ holds only
when p = p′ (see rule (1) in Definition 14).

• Or p′ is of the form �(u, r) in which case rules (2) and (3) must be
checked, which both have finite premises.

• Or p′ is of the form �(r, r′), in which case the rule (4) must be checked,
which has finite premises.
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• Or p′ is of the form �(r, q′) where q′ ∈ P , in which case rules (5) and
(6) apply. In both cases the premises are finite, because for a q′ ∈ P ,
q  q′ only holds for q = q′.

For the induction step, suppose that p′ is �(r′, p′′′), for some role r′

and privilege p′′′ with n − 1 nestings of �. Now, p → p′ can only hold
if the premises of rule (5) or (6) hold. In both cases, the premises are
decidable, either because they are finite, or because the induction hypothesis
is applicable, since in p′′ → p′′′, p′′′ is structurally smaller than p′.

Let us show how the proof above can be used in practice, as a procedure
for checking whether one privilege is weaker than another.

Example 26 (Using the privilege ordering) Consider Example 25
again. Can Anna assign Bill to the dbusr2 role? We should decide whether

�(bill , doctor ) �(bill , dbusr 2).

We have to check that the role doctor inherits the privilege �(bill , dbusr 2).
Using the second line of Definition 14, we find that this is the case.

To give a more involved example, we suppose that the hospital’s security
officer Charlie has the privilege �(doctor ,�(doctor , dbusr2)). Can Charlie
give doctors the privilege �(doctor , dbusr 3)? We have to check whether

�(doctor ,�(nurse, dbusr 2)) �(doctor ,�(doctor , dbusr 3)).

This is indeed the case by using line (6) first, and then line (2).
Now, for the sake of exposition, let us remove the edge between the doctor

and the role dbusr2 . Let us show how to determine that the previous relation
does not hold: Now only line (6) can apply. So we must decide whether
�(nurse, dbusr 2)  �(doctor , dbusr 2). This is a base case of the induction
described in the proof of Lemma 1: Only lines 2, 3, and 4 remains to be
checked and than we can conclude that it does not hold.

It could be useful to find all the privileges p′ weaker than a given p.
Perhaps surprisingly, in some cases the set of all privileges p′ weaker than a
given privilege p, is infinite. (In fact, our proof of decidability of p  p′ is
over the structure of p′. ) Let us give an example.

Example 27 (Infinitely many weaker privileges) Consider a policy
where (r2,�(r1, r2)) ∈ PA. We should stress here that this is not an ar-
tificial, or peculiar policy: Members of r2 can make members of r1, member
of r2 too.

Suppose we are interested in finding all the privileges weaker than
�(r1, r2). The first weaker privilege we discover by applying rule (2) in
definition 14:

�(r1,�(r1, r2)).
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Using this result in rule (3), we find another weaker privilege,

�(r1,�(r1,�(r1, r2))),

and we can use this again in rule (3), and so on.

The outer nesting in the last term in the this example is in a sense
redundant. Instead of assigning the privilege �(r1, r2) to r1 directly, one
assigns the privilege to do so, to r1. This only requires the users in role r1
to perform an extra administrative step, which is cumbersome for the users
in r1, does not provide any safeguards. For all practical purpose one could
stop after NRH applications of rule (3), where NRH is the length of the
longest chain in RH . Informally, the argument goes as follows. Consider
a privilege of the form �(r,�(r′,�(r′′, p))). If r is a higher role than r′

(and not the same role) then the privilege expression is practically useless.
Otherwise it is not (as discussed). The number of useful nestings is hence
at most NRH .

The computational complexity of making an access control decision
based on a RBAC policy φ depends on the structure of φ. To enable fast
access control decisions in a practical application, regardless, it would be
convenient to be able to calculate for each role r all the privileges p for
which r φ p, beforehand. However as shown in the previous example, this
is in principle impossible. A possible solution to this problem is to find all T
pairs v, v′ such that v →φ v

′, and use the T pairs to make the actual access
control decision, by applying Definition 14.

6.5 Related Work

The problem of administration of an RBAC system was first addressed by
Sandhu et al. [79]. Later, numerous articles have been published extending
or improving the administration model proposed there [17, 27, 34, 78, 87,
92, 93]. We discuss the seminal works.

Barka et al. [17] distinguish between original and delegated user role
assignments. Delegations are modeled using special sets, and different sets
are used for single step and double step delegations (which must remain
disjoint). A function is used to verify if membership to a role can be dele-
gated. Privileges can also be delegated, provided they are in the special set
of delegatable privileges belonging to the role. In their work, each level of
delegation requires the definition of tens of sets and functions, whereas in
our model administrative privileges, of an arbitrary complexity, are simply
assigned to roles, just like the ordinary privileges. The PDBM model [93]
defines a cascaded delegation. This form of delegation is also expressible in
our grammar (by nesting the � connective). In the PDBM model, however,
each delegation requires the addition of a separate role, which is cumber-
some given the fact that there are already many roles to manage. In our
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model the administrative privileges are assigned to roles just like the ordi-
nary privileges. It is not required to add any additional roles.

A number of proposals define general constraints on the administrative
privileges. For example, the constraint that a user must first have a privilege,
before being allowed to delegate it to other users. Note that, as mentioned
earlier, here no particular choice is made with respect to such constraints.
Zhang et al. [92] implement rule based constraints on delegations. They
demonstrate their model using a Prolog program. Basically, they analyze the
properties of a centralized RBAC system, focussing on so-called separation
of duty policies. Crampton [27] defines the concept of administrative scope.
Basically a role r is in the scope of a role r′ if there is no role above r′

that is not below r. They show how administrative scope can be used to
constrain delegations to evolve in a natural progression in the role hierarchy.
Bandman et al. [16] use a general constraint language to specify constraints
on who can receive certain delegations.

6.6 Conclusions

The issue of designing policy administration mechanisms for RBAC has re-
ceived considerable attention recently [17, 27, 34, 78, 93]. With our model
we contribute to these lines of research. We introduce the notion of adminis-
trative refinement of policies, and we show how it can be used to allow more
flexible management of the RBAC policy. Concretely, our contribution is the
definition of a general class of administrative policies, and a formal definition
of administrative refinement. We have shown that there is a natural order-
ing for administrative privileges which yields administrative refinements of
policies, and we have given the proof that this ordering is decidable. We
also showed how useful our extension is in practice. Our approach allows
administrative users to be implicitly authorized for weaker administrative
operations, which is thus more flexible and more safe as well.

Revocation privileges are included in our model, but we have not iden-
tified (yet) a separate ordering for revocation privileges (as discussed in the
remark at the end of Section 6.4.1). We believe that this is an interesting
possibility for further research.
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Chapter 7
RBAC Administration in
Distributed Systems

7.1 Introduction

In the previous chapter we have proposed an administrative model for the
ANSI RBAC standard. In this chapter we address the issue of administration
of RBAC policies in a distributed system.

Large and distributed information systems are increasingly common. For
example, most large hospitals run a variety of systems that process medical
data. Access control is needed across these systems because (by law) health
records must be protected from unauthorized access. RBAC is often used in
such settings, and is designed to simplify the specification of access control
policies. Still, practice has pointed out that - in many organizations - RBAC
policies can become large, involving hundreds of roles [34], sometimes as
many roles as users. This makes administration of an RBAC-based system
a difficult task.

Consider for example a hospital with a distributed system composed of
various subsystems that store and process confidential medical data. Both
safety, and availability are key in this setting. Let us suppose that the hospi-
tal’s security officer, to fulfill data-protection requirements, has deployed a
set of different RBAC policies at different subsystems in the hospital. Over
time some of these policies need to change. For example, a nurse may need to
be assigned to a new role because of a changed hospital shift, or a database
role may need to get access to additional tables, because some database
application changed. Now who can make the policy changes? Which subsys-
tems need to update their access control policies following policy changes?
How can the update of the various subsystems take place efficiently? How
can multiple administrative systems be used concurrently?

Although administration of RBAC has received considerable attention
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recently, and numerous researchers have proposed different ways of choosing
administrative RBAC policies [17, 26, 27, 3, 34, 60, 78, 87, 88, 92, 93], there
is no literature on the more practical issue of administration of a distributed
RBAC system. The RBAC standard does not address this either. We
propose a model for the administration of a distributed RBAC system and
we show how it can be translated to a practical implementation.

• We define a distributed system model with a central administrative
system, while the objects and the RBAC policy are distributed across
the different subsystems. A key component of our model is a mapping
based on the fact that different subsystems protect different subsets
of data, and that therefore only some policy changes are relevant to
certain subsystems. We use this in Section 7.2 to define formal safety
and availability requirements for the administration of an RBAC policy
across the subsystems.

• We derive an administration procedure, which is efficient in the sense
that subsystems are only updated about relevant policy changes, and
correct in the sense that it preserves the formal safety and availability
requirements (Section 7.3).

• We translate the administration procedure to practical pseudo-code to
demonstrate how it can be implemented (Section 7.3.1).

• We show how our model can be extended with multiple administrative
subsystems (Section 6) and we sketch the additional steps that are re-
quired here. This addresses advanced settings with for example a hu-
man resources system for assigning users to roles, and a database man-
agement system (DBMS) for assigning database privileges to database
roles.

7.2 Distributed System Model

In this section we define a basic distributed system model. The model
consists of a central administrative subsystem and a number of non-
administrative subsystems. In section 7.4 we show how it can be generalized
to a system with multiple administrative subsystems.

We restrict our attention to General Hierarchical RBAC model, as de-
fined in the ANSI RBAC standard, extended with the general class of ad-
ministrative policies (as defined in Sections 6.2, and 6.3 in the previous
chapter).

Consider a heterogeneous distributed system composed of databases, file
systems and so one, like one may find in organizations such as hospitals.
In such a distributed system it is not convenient to use a central reference
monitor to decide all user access requests, as each request would involve
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contacting the central reference monitor creating a bottleneck and a single
point of failure. On the other hand, when each subsystem has its own refer-
ence monitor, and a separate policy, then one needs to manage those policies
consistently. For example, if a user is assigned to the role of employee, all
subsystems in the organization should allow the user to use the privileges
of the employee role and vice versa when a user is revoked from a role. In-
consistencies in the definition of roles across the distributed system cause
confusion and may affect safety and availability of data across the system.

So one could argue that a procedure is needed that maintains exact
copies of a single system-wide policy at the different subsystems, and that
updates all the subsystems after each policy change. At the same time, it
is unnecessary to send updates to, say, a printer about changed database
table privileges, particularly given the fact that in practice RBAC policies
can be large and policy changes frequent [34]. Additionally, for example in
health care, policy definitions may even be privacy-sensitive. For example, a
policy that states that a specialist on skin diseases has full access to a health
record of a certain patient, reveals a lot of information about the patients
health. In this section we define a distributed system model, and basic
safety and availability requirements, allowing us to derive a more efficient
administration procedure (in Section 7.4).

The privilege mapping pm is a key component of our model, allowing us
to capitalize on the fact that different subsystems offer access to different
(largely disjoint) subsets of the resources, and avoid excessive updates about
irrelevant policy changes. Formally it is defined as follows.

Definition 15 (Privilege Mapping) The privilege mapping, denoted
pm, is a mapping pm : S → P(P ). We say that subsystem s protects
object o, if (a, o) ∈ pm(s).

The privileges in pm(s) are referred to as the relevant user privileges for
subsystem s. We do not require that pm(s) and pm(s′) are disjoint for
different subsystems s and s′ (see also remark 11). The privilege mapping
can be used as a tool for the security officer to evaluate and implement policy
changes. Let us give a practical example.

Example 28 (Distributed hospital system) A hospital has a network
consisting of a database named Sqil , a medical system Sqan, a printer Inq,
and an administrative system HSO for administrative tasks, such as policy
changes. The system is depicted in Figure 19, where the dots denote ordinary
users of the system.

The hospital’s security officer enforces a number of RBAC policies across
the different subsystems that protect resources such as an electronic health
record table of Sqil denoted ehrtable, and a scan job of Sqan called job. The
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Figure 19: A hospital’s distributed system, where the dots are users, and
HSO is the system used by the hospital security officers to issue policies.

hospital’s security officer has defined the following privilege mapping:

pm(Sqil) = {(ehrtable , view), (ehrtable , insert)}

pm(Sqan) = {(job, halt), (job, start)}

pm(Inq) = {(black , print), (color , print)}

Basically, for each subsystem, pm() gives the list of privileges that are
relevant for that subsystem, i. e. regarding actions and object protected by
that system.

In the rest of this chapter we will use the privilege mapping to define
formal properties, and also an administrative procedure, to deal with policy
deployment, and policy changes. We will assume, in our running example,
that the security officer has defined such a mapping. One could argue that
in some settings it is cumbersome to keep track of which objects are present
on which systems. On the other hand, in many practical situations, the
object mapping follows largely from the names of the objects. Privileges to
read ehrtable1, ehrtable2, and so on, would all map to the database system
Sqil , while privileges to start and halt job1, job2, and so on, would all map
to the medical system Sqan.

Remark 11 (Privilege mapping) The privilege mapping could map
some of the objects to multiple subsystems. For instance when the same
resource is present at multiple subsystems, such as in the case of a cluster
of databases that duplicate certain tables.

There may exist practical settings where it is difficult to keep track of
which objects or resources reside on which subsystems, for instance because
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Figure 20: Sound and complete policy distribution.

users can move them freely from one subsystem to another. In such settings
it may be more convenient, but in principle less precise, to map the resources
to all the subsystems they may be moved to.

Our model of a distributed system comprises a set of systems (each with
a reference monitor), denoted S and ranged over by s0, s1, . . . , and a single
administrative system, denoted sa , from which (administrative) users can
make policy changes. The policy of the administrative system is denoted φ,
while the policy of subsystem s is denoted ψ(s), where ψ : S → Φ defines
the distribution of policies across the subsystems.

Definition 16 (Distributed RBAC System) A distributed system is a
tuple

(S, pm , φ, ψ ),

where S is a set of systems, pm : S → P(P ) is the distributed system’s
privilege mapping, φ ∈ Φ◦ is an administrative policy, and ψ : S → Φ is a
function that maps each subsystem to a non-administrative policy.

Using the privilege mapping we can define two formal requirements for
the distribution of policies across the subsystems.

The first is the basic requirement that the vertices in each of the subsys-
tem’s policies are included in the policy of the administrative system. This
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is in the interest of safety and administration, so that the security officer, or
some other user of HSO, in Example 28, can correctly assess the impact of
policy changes. The second captures that the relevant parts of the adminis-
trative system’s policy should be present at the subsystems. This is in the
interest of availability of resources, so that, as in Example 28, if the security
officer has given to users the privilege to access a resources, then they are
also granted access by the subsystem.

Definition 17 (Soundness and Completeness) Given a distributed
system (S, pm , φ, ψ), we say that ψ is sound with respect to the central
policy φ, if

⋃

s∈S

ψ(s) ⊆ φ.

On the other hand, we say that the distribution ψ is complete with respect
to the central policy φ if and only if for any subsystem s ∈ S, and any
privilege p ∈ pm(s)

u→φ p implies u→ψ(s) p.

Soundness is important from the viewpoint of safety: it ensures that
subsystems grant access only when it is allowed by the administrative policy
φ. It may seem that a weaker requirement suffices: For any s ∈ S, and
any privilege p ∈ pm(s), u →ψ(s) p implies u →φ p. However, such a weak
requirement would complicate the implementation of policy changes, as will
become clear in the next section.

Completeness, on the other hand, is important from the viewpoint of
availability: it ensures that the subsystem protecting object o grants access
to the object o, whenever it is allowed by the administrative policy. Before
defining an administration procedure that implements policy changes, pre-
serving soundness and completeness (in the next section) let us introduce the
running example of this chapter, and demonstrate the practical usefulness
of the definitions above.

Example 29 (RBAC policies in the hospital) Let us continue in the
setting of Example 28. The security officer has defined a number of roles
for staff and nurses of the operation room (OR) (orstaff , ornurse), and staff
and nurses of the emergency room (ER) (erstaff , ernurse). For the sake of
brevity we do not elaborate on the exact names of these users, but refer to
the roles they are a member of.

The security officer has prepared the distributed system as shown in Fig-
ure 20. The policy φ is the (administrative) policy of system HSO, and the
policies ψ(Sqil), ψ(Sqan), and ψ(Inq) are the (non-administrative) policies
of the database Sqil , the medical system Sqan, and the printer Inq.

The distribution ψ is sound with respect to the central policy φ, because
each subsystem policy is a subset of the administrative policy φ. It is also
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clear that the distribution ψ is complete. So although the subsystems in the
hospital do not enforce the hospital’s policy in its entirety, this does not
affect availability nor safety of the resources. Indeed, most parts of the hos-
pital policy are in practice irrelevant for the printer Inq, as Inq does not
protect database tables of Sqil , nor the resources of Sqan. Also the adminis-
trative privileges �(., .), and ♦(., .) are irrelevant for the subsystems, because
they can not be used for administrative actions anyway. These subsystems
implement standard RBAC policies from Φ.

Soundness and completeness are, so to speak, the minimal requirements
that must be fulfilled. The largest distribution ψ, that is both complete and
sound, is the distribution where ψ(s) = φ for all s ∈ S, where all subsystems
have the same policy. We can also define the smallest policy distribution
that satisfies soundness and completeness.

Definition 18 (Upper and Lower Closure) The upper closure of a ver-
tex v in φ, denoted, (↑φ v), is {(v′, v′′) ∈ φ | v′′ →φ v}, and the lower closure
of a vertex v in φ, denoted, (↓φ v), is {(v′, v′′) ∈ φ | v →φ v

′}.

The smallest distribution ψ that is sound and complete is such that for
every subsystem s ∈ S, the following holds,

ψ(s) =
⋃

p∈pm(s)

(↑φ p).

We call this the lean distribution. The lean policy distribution has the
advantage that components of the distributed system have the parts of the
policy that are strictly necessary to decide about allowing or denying user
actions.

7.3 Centralized Administration

In the previous section we have specified formal requirements for the dis-
tribution of RBAC policies across a distributed system (see Definition 17).
In this section we define an administration procedure for the administrative
reference monitor sa that preserves these requirements.

We model the system sa by defining a command queue, containing ad-
ministrative commands (�, or �) for policy changes, and message commands.
The message commands are needed to model the propagation of policy
changes across the subsystems. They form a set {⊕s(δ),⊖s(δ)}, where s ∈ S
denotes the recipient subsystem and δ ∈ Φ is a policy, and ⊕ denotes addi-
tion and ⊖ denotes removal. Let us first sketch the procedure by giving an
example: a user u of the administrative system sa places the administrative
command �u(r, r

′) in the queue. The administrative subsystem processes
it by (1) checking that φ allows u to make this policy change, (2) changing
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its policy φ to φ ∪ (r, r′), (3) replacing the administrative command with
message commands ⊕s

(

(r, r′) ∪ (↑φ r)
)

for each subsystem s ∈ S that has
relevant privileges in the lower closure of r′ in φ, and (4) processing the mes-
sage commands. In the sequel we will show that sending

(

(r, r′) ∪ (↑φ r)
)

suffices to preserve completeness. Moreover we will show that the procedure
preserves soundness. Let CQ denote the set of all command queues. We
define the administration procedure by a formal transition function.

Definition 19 (Distributed Administration) Given a distributed sys-
tem (S, pm , φ, ψ), let cq ∈ CQ be a command queue, and N be the
number of systems in S. The transition function ⇒: CQ × Φ◦ × (Φ)N →
CQ × Φ◦ × (Φ)N , is defined as follows.

〈cq , φ, ψ〉 ⇒ 〈cq ′, φ′, ψ′〉 holds when:

if cq = [�u(v, v
′) : cq ′′] and u→φ �(v, v′), then

cq ′ = [⊕s1

(

(v, v′) ∪ (↑φ v)
)

: · · · : ⊕sk

(

(v, v′) ∪ (↑φ v)
)

: cq ′′],
where {s1, . . . , sk} are all the subsystems with relevant
privileges in the lower closure of v′, that is
{s1, . . . , sk} = {s ∈ S | if ∃p ∈ pm(s).v′ →φ p)}.
φ′ = φ ∪ (v, v′), and ψ′ = ψ.

if cq = [�u(v, v
′) : cq ′′] and u→φ ♦(v, v′), then

cq ′ = [⊖s1

(

(v, v′)
)

: · · · : ⊖sk

(

(v, v′)
)

: cq ′′],
where {s1, . . . , sk} are all the subsystems.
φ′ = φ \ (v, v′), and ψ′ = ψ.

if cq = [⊕s(δ) : cq ′′], then cq ′ = cq ′′,
φ′ = φ, ψ′(s) = ψ(s) ∪ δ and ψ′(s′) = ψ(s′) for s′ 6= s.

if cq = [⊖s(δ) : cq ′′], then cq ′ = cq ′′,
φ′ = φ and ψ′(s) = ψ(s) \ δ and ψ′(s′) = ψ(s′) for s′ 6= s.

The messages are the smallest when the command is a user assignment,
since the upper closure of a user is always empty. This is also the most
frequently used administrative command [34]. Message commands following
an assignment (�) only involve those subsystems that are ‘affected’ by it.
Revocations (�) on the other hand are broadcast to all subsystems to ensure
soundness of ψ.

One could make this procedure even more efficient by keeping a history
of sent policy definitions per subsystem, to avoid sending revocations of def-
initions to subsystems that never received them (or to avoid sending the
same policy definitions twice). We do not go into details about this, for the
sake of brevity. Although it is common in literature on distributed systems
to use an expiration mechanism to reduce the number of revocations [75],
we refrain from going into details about time or expiration here, because we
believe they are out of the scope of the RBAC standard. We would like to
mention however that, because soundness and completeness are preserved
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Figure 21: Update for subsystem Sqan.

when edges expire, it seems straightforward to add expiration to our model.
The procedure preserves soundness and completeness, but it does not pre-
serve leanness, for example. To preserve leanness subsystems could remove
irrelevant parts of the subsystem’s policy, independently of the administra-
tive reference monitor. System s can check for each edge (v, v′) in ψ(s)
whether or not v′ →ψ(s) p for a relevant privilege p ∈ pm(s).

Let us return to our running example to demonstrate a practical instance
of the administration procedure.

Example 30 (Administration in the hospital) Suppose Bob, a mem-
ber of orstaff, wants to grant all members of ornurse the right to use the
medical system Sqan, say for a new type of operation. To do so, Bob puts
an administrative command in the queue of the administrative system HSO.
He is allowed to do so, by the administrative policy φ in Figure 20.

The administrative system HSO now takes the following steps: The com-
mand in the queue is

�Bob(ornurse , sqanusr ).

After executing this command, the new policy φ′ contains the new edge
(ornurse , sqanusr ) and the command on the queue is replaced by the message
command

⊕Sqan

(

(ornurse , sqanusr ) ∪ (↑φ ornurse)
)

.

The message command is executed, updating also the policy of Sqan. The
new policy for Sqan includes the upper closure of ornurse, i.e. the new
edge (ornurse , sqanusr ), as well as the ‘members’ of ornurse. So Bob’s
administrative command changes the policies φ and ψ(Sqan), but not the
policies of Inq or Sqil . The policy changes corresponding to Bob’s action
are depicted in Figure 21 by dashed edges.

The administration procedure preserves soundness and completeness. It
does so without sending irrelevant parts of φ to subsystems. We denote
a sequential execution of administrative commands (a run) by ⇒∗ and an
empty queue by ε.
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Theorem 4 (Changes preserve soundness and completeness) Let
(S, pm , φ, ψ ) be a distributed system. For any command queue cq ∈ CQ
that contains only administrative commands (of the form �.(., .), or �.(., .)),
the run to an empty queue

〈cq , φ, ψ 〉 ⇒∗ 〈ε, φ′, ψ′ 〉,

yields a policy φ′ and a distribution ψ′ for which the following statements
hold:

1. If ψ is sound with respect to φ, then also ψ′ is sound with respect to
φ′.

2. If ψ is complete with respect to φ, then also ψ′ is complete with respect
to φ′.

Proof 5 We have to show that an arbitrary queue of administrative com-
mands preserves soundness and completeness. We prove the result by in-
duction on the number of commands in the queue. Let us sketch the proof
briefly. We assume that the distribution ψ is initially sound and complete
with respect to φ.

The base case (the empty queue) is trivial. The induction hypothesis is
that soundness and completeness are preserved by queues with n commands,
and we show that this holds for queues with n + 1 commands. Consider a
queue containing n+ 1 commands. We enumerate the different possibilities
for the first command in the queue.

• If the first command is of the form �u(v, v
′), and it is replaced by

the message commands ⊕s1

(

(v, v′) ∪ (↑φ v)
)

:. . . :⊕sk

(

(v, v′) ∪ (↑φ v)
)

on the queue, where {s1, . . . , sk} = {s ∈ S | if ∃p ∈ pm(s).v′ →φ p)}.
The administrative policy is changed to φ′′ = φ ∪ (v, v′) (cf. the first
item in Definition 19), and after processing the message commands,
the distribution changes to ψ′′.

Soundness follows since the difference between ψ(s) and ψ′(s) is at
most (v, v′) ∪ (↑φ v), which is a subset of φ′. The remaining queue is
shorter and preserves soundness by induction hypothesis.

Completeness follows trivially for subsystems outside {s1, . . . , sk}, as
the policy change does not affect the upper closure of their privileges.
The other subsystems are complete before the change, so they already
have the upper closure up till v2. The update message adds to this also
the rest of the upper closure (v1, v2), the new edge, and (↑φ v1).

The rest of the queue preserves completeness by induction hypothesis.

• If the first command is of the form �u(v, v
′), and it is replaced by the

message commands that remove the edge (v, v′) from all systems in S.
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Soundness is straightforward, since the distribution was sound before
processing this command, and the edge (v, v′) is removed from all the
policies of the subsystems.

For completeness observe that ψ is initially complete with respect to
φ, and that by removing an edge the upper closure only shrinks.

By the induction hypothesis, both soundness and completeness are also
preserved by the commands on the remaining (shorter) queue.

This completes the proof.

7.3.1 Implementation

The formal procedure of Definition 19 can be translated into a decision
procedure. In this section we describe procedures, by using pseudo code,
both for the administrative reference monitor and for the non-administrative
reference monitors of the subsystems.

Let us introduce the syntax of the code. Vertices v1, v2,... (users,
roles, and privileges) are assumed to be unique strings, and edges are pairs
of such strings (v1, v2). Policies are represented as lists of edges. Below
the expression a in b checks whether a is in the list b or not. The functions
add, remove, and join denote adding, and removing elements from lists, and
joining two lists, respectively, and [] denotes the empty list.

We use sub-procedures for finding the upper and lower closure (see
Definition 18) of a vertex in a policy, for later use. The function lower(a,

b) returns a list of elements from the policy a which are in the lower closure
of b, i.e. (↓a b). Both lower and upper, its converse, are implemented by a
basic depth-first search.

procedure lower(policy, v1, visited)

visited := add(visited, v1).

list l1 := [].

for (v1,v2) in policy and v2 not in visited

list l2 := dfs(policy, v2, visited).

l1 := join(l1, l2).

return with l1.

The procedure looks for edges starting at v1, and follows each of
them downwards. To avoid running in circles we mark which vertices where
visited already. The upper closure upper is the same procedure except for
inverting the direction of the edges of policy.

Administrative commands are expressed as triples: (user, action,

(v1, v2)), where the second parameter is either � or �, and (v1, v2)

is the edge being assigned or revoked. Queues are lists of administrative
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commands. We use the operation shift that returns and removes the first
element of the queue.

The main procedure for the administrative system takes a policy and a
queue of commands and returns the policy that results from applying the
commands in the queue. It can be written as follows.

procedure admin (policy, queue)

if queue= []

return with policy.

endif

(user, action, (v1, v2)) := shift(queue).

list lowu := lower(policy, user).

if action = � and �(v1,v2) in second(lowu)

list uppv1 := upper(policy, v1).

list lowv2 := lower(policy, v2).

list dest := [].

for priv in second(lowv2)

for s in systems

if pm(s, priv) and s not in dest

dest := add(dest, s).

endif

for s in dest

send(s, ⊕, add(uppv1, (v1, v2))).

return with admin(add(policy, (v1,v2)), queue).

endif

if action = � and ♦(v1,v2) in second(lowu)

for s in systems

send(s, ⊖, [(v1,v2)])

return with admin(remove(policy, (v1,v2)),queue).

endif

return with admin(policy, queue).

Let us explain the procedure in detail. In case the action is � it is checked
whether or not the user is allowed to perform that command. This is only
true when the corresponding privilege �(v1,v2) is in the lower closure of
user. The function second, used here, takes a list of pairs, and returns a list
of the second element of every pair. The next step takes care of sending the
proper update messages. The list of subsystems is denoted systems, and the
privilege mapping is a function pm that takes a privilege and a system name
as input and returns true if the privilege is a relevant privilege for the system.
The lower closure of v2 is used to select which list of subsystems dest will
receive a message (denoted by send). The upper closure of v1, on the other
hand, constitutes the contents of the update message (cf. Definition 19).
The steps for � can be explained in the same way. The procedure recurs
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through the queue, untill it returns the new administrative policy, or if no
command was allowed the same administrative policy.

The procedure for the non-administrative system is more simple. There
are two types of commands: A message command by an administrative
system, denoted by receive, and a basic user command by a user who
wants to perform an action on an object, denoted by do.

procedure subsystem(policy, queue)

if queue= []

return with policy.

endif

shift(queue) := cmd.

if cmd = receive(⊕, delta)

return with subsystem(add(policy, delta),queue).

endif

if cmd = receive(⊖, delta)

return with subsystem(remove(policy, delta), queue).

endif

if cmd = (user, action, object)

list lowu := lower(policy,user).

if (action,object) in second(lowu)

do(action, object).

endif

endif

return with subsystem(policy,queue).

Note that in this procedure the lower closure of user in policy is cal-
culated at every user access request. This may be time-consuming (each
search involves O(E) steps, where E is the number of edges in ψ(s)). One
could instead calculate the full transitive closure for the policy once, and
update it only when update messages arrive.

7.4 Decentralized Administration

In the previous sections we have modeled systems with a single adminis-
trative reference monitor. In this section we show how our model can be
extended to deal with systems with multiple administrative reference moni-
tors.

In practice, administrative actions (e.g. assigning a user to a role) are rel-
atively rare; for instance, they are less frequent than ordinary user actions
(e.g. accessing a database table). This suggests that for many practical
distributed systems a single administrative reference monitor should be suf-
ficient. Still, there may be scenarios where multiple administrative monitors
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Figure 22: Decentralized administration in a hospital.

are needed. For example when two different organizations share a common
infrastructure, and at the same time prefer to use their own separate ad-
ministrative systems. In this setting, one could use identical administrative
subsystems augmented with standard mutual exclusion techniques to coordi-
nate policy changes. More challenging are the settings in which the adminis-
trative reference monitors are not identical (i.e. with different administrative
policies), for instance because they are not equally trustworthy.

In this section we briefly describe the additional steps needed to extend
our distributed model to these settings, and we define an additional require-
ment for the distribution of policies across the administrative systems. The
extension, although not entirely straightforward, makes use of the same for-
mal structure of the previous section.

Let us assume that – in addition to the set of ordinary subsystems S
– there exist a set of administrative reference monitors S◦ (ranged over by
sa, sb, . . . ), and an administrative privilege mapping

pm◦ : S◦ → P(P ◦)

As before, we say that p ∈ P ◦ is a relevant administrative privilege for
system s, if and only if p ∈ pm◦(s). The mapping pm◦ corresponds to
the intuitive idea that certain administrative reference monitors can only be
used for certain administrative actions. A distributed system is defined as
a tuple

(S◦, S, pm◦, pm , ψ◦, ψ),

where ψ◦ : S◦ → Φ◦ is the distribution function of the administrative poli-
cies across the administrative reference monitors. Let us see an example
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(refer to Figure 22): the system HR is used at the human resources depart-
ment for changing user-role assignments, while the system DBMS is used
at the hospital’s data center for changing database privileges. Here, there
are multiple distinct administrative subsystems, and multiple distinct non-
administrative subsystems, and there is no central administrative system.

Let us define φ by

φ =
⋃

s∈S◦

ψ◦(s) ∪
⋃

s∈S

ψ(s).

The policy φ is here no longer the policy of a central administrative system
(as in the previous sections), but only an abstract notion of the full system-
wide policy. Like before, the subsystems each hold parts of φ.

Let us now define requirements for ψ and ψ◦ concerning safety and avail-
ability of objects, similar to the ones proposed in Section 7.2.

The safety requirement (soundness) remains the same, but the availabil-
ity requirement (completeness) becomes more complex. The policy of an
administrative reference monitor should be (1) complete for its relevant ad-
ministrative privileges, and – in addition – (2) it should contain the parts of
φ needed to produce the message commands described in Section 7.3.1. We
call the first standard completeness and the second administrative complete-
ness. Let us show a basic example.

Example 31 (Standard and administrative completeness)
Consider an administrative system sb ∈ S◦, with �(v, v′) ∈ pm◦(sb),
and (r,�(v, v′)) ∈ φ.

• Standard completeness with respect to the privilege �(v, v′) requires
that ψ contains (↑φ r).

• Administrative completeness additionally requires that ψ contains
(

(↑φ
v) ∪ (↓φ v

′)
)

, i.e. the parts of φ needed to perform the message com-
mands described in Section 7.3.

We call
(

(↑φ v) ∪ (↓φ v′)
)

, in the example, the policy support of the ad-
ministrative privilege �(v, v′). Basically, the policy support of an admin-
istrative privilege ensures that the administrative subsystem can perform
administrative operations, and propagate the relevant additional parts of φ
to subsystems. Let us show an example of policy support.

Example 32 (Policy support) Figure 23 shows the policy support of two
administrative privileges.

The edges in the dark gray areas form the policy support of the privilege
�(ernurse, dbusr), and the light gray areas the policy support of the privilege
�(ornurse , sqanusr ).
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Figure 23: Policy support for different administrative privileges.

It is now clear how a ’correct’ and ’efficient’ administration procedure
can be defined in this distributed model. It depends on the administrative
privilege mapping pm◦ as follows: an administrative subsystems sa must
send an update to an administrative subsystem sb every time the policy
support for relevant administrative privileges of sb changes.

7.5 Related Work

The administration of RBAC policies is an issue that attracts consider-
able attention from the research community. In particular, there is a
large body of literature on how to choose administrative policies (infor-
mally, about which roles should get what authority to change the RBAC
policy) [17, 26, 27, 3, 34, 60, 78, 87, 92, 93]. The considerations that moti-
vate the choices in these proposals are diverse. Crampton and Loizou, for
example motivate their choice by considering responsibility in a organiza-
tion hierarchy [27], whereas Li and Mao consider for example flexibility, and
psychological acceptability [60]. None of these proposals address how to dis-
tribute RBAC policies across a distributed system, in a correct and efficient
way (which is the scope of this chapter). We now consider some of these
proposals in more detail.

Wang and Osborn [88] introduce administrative domains for role graphs,
a class of RBAC policies with a single lowest and single highest role, called
minrole and maxrole respectively. Each administrative domain is defined by
one role, and contains all the roles below it, except minrole. Administrative
domains may not overlap, unless one domain includes the other completely.
Wang and Osborn justify this restriction by arguing that it should not be
allowed for different domain administrators to make changes to the same
roles. On the other hand they also stress that this is a disadvantage of
their model, arguing that in practice one would like to have overlapping
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domains, for example when one resource is shared by different departments
(see Figure 20). Implementation of RBAC in distributed systems is not at
the basis of this choice. For example, the administrative policy depicted in
Figure 20 is not admitted by the administrative domains model of Wang and
Osborn. In their model, administrative privileges about the role sqanusr can
only be assigned to a domain administrator, which also has administrative
privileges about ehrstaff and orstaff. Although we agree that there may be
practical settings where administrative domains may be useful, we do not
adopt such restrictions here.

Closely related is the work by Crampton and Loizou [27], who define
the concept of administrative scope. Basically a role r is in the scope of a
role r′ if there is no role above r that is not comparable to r′. They show
how administrative scope can be used to constrain delegations to evolve in
a natural progression in the role hierarchy. Administrative scopes can be
used as a basis for a policy distribution, but this does not yield the sound
and complete administration procedures defined in our model.

Similarly, in the ERBAC model, proposed by Kern et al. scopes are used
to define over which RBAC objects and administrator has authority [54].
The ERBAC model focuses on managing RBAC policies in a commercial
enterprise security software. Although ERBAC has been verified against a
business case involving multiple remote company sites, the main goal of the
administrative component of ERBAC is to allow for delegation of adminis-
trative authority, and does not deal with the issue of distributing (parts) of
RBAC policies in a proper way.

Li and Mao design three main requirements (flexibility and scalability,
psychological acceptability, economy of mechanism) and analyze them in
different existing administrative models, and they design UARBAC, a new
family of models. As mentioned earlier, none of the above-mentioned models
address the issue of distributing (administrative) policies across a distributed
system.

Somewhat related to our work is the paper by Bhamidipati and Sandhu
which discusses how RBAC can be used in a number of different architectures
with multiple servers in a network [20]. They focus on the capabilities of
the servers, specifically on whether or not RBAC is supported, and treat
the role-hierarchy as a central service. In our model on the other hand
we distinguish which policy changes are relevant, and we do not update
subsystems about irrelevant policy changes. dRBAC is a decentralized trust
management and access control mechanism for systems that span multiple
administrative domains [36]. It is targeted at settings where independent
organizations form dynamic coalitions. Similar settings are also addressed
by the TM models to be discussed below. In dRBAC, local policies in one
administrative domain can be used in another domain; on the other hand,
dRBAC does not address the issue of distributing policies (efficiently) across
systems within an administrative domain.
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Role-based Trust Management (TM) [63] and distributed certificate sys-
tems, such as SDSI [75], are remotely related lines of research. In these
systems, a number of agents exchange security statements and may create
hierarchies similar to those used in RBAC. Issuing TM credentials corre-
sponds to administrative commands in RBAC. In TM however it is gen-
erally assumed that users are free to utter security statements, while the
focus is on whether to trust such statements (which involves some trust cal-
culation by the receiver of such statements). In RBAC this assumption is
inappropriate, because policy changes are explicitly guarded by administra-
tive privileges. The central issue in this chapter is the issue of ensuring that
users can perform the actions they are allowed to, without broadcasting the
entire security policy, has also been researched in TM. In some TM models
the user is expected to collect the credentials needed for access by itself. In
others credential chain discovery algorithms are used, which are automatic
procedures to retrieve missing credentials. Here we describe a model that
prevents situations where policy definitions must be retrieved ad-hoc by a
subsystem, by pushing them to the interested subsystems upon the issuing
of policy changes.

7.6 Conclusions

Despite a large body of literature on the administration of RBAC poli-
cies [27, 34, 78, 88], there is no proposal for RBAC administration in dis-
tributed systems, although these models are concerned with decentralizing
authority, which can be used in a distributed setting. In this chapter we
propose a model for the implementation of a common RBAC standard in a
distributed system. We focus on the formal requirements for such implemen-
tation, and we propose an administration procedure for the deployment of
policy changes across the distributed system, which is efficient and preserves
the formal requirements. A key part of our model is a privilege mapping,
which captures the intuitive idea that different systems protect different ob-
jects. To demonstrate how the procedure can be implemented in practice,
we translate our procedure to practical pseudo-code, and finally we also indi-
cate how to extend our model to cover settings with multiple administrative
systems.



Chapter 8
Concluding Remarks

In this thesis we address the question of designing a flexible access control
system suitable for dynamic collaborative environments. We take two differ-
ent approaches. In the first part of this thesis we have proposed a new access
control framework AC2, and we have proposed extensions to an existing ac-
cess control framework (RBAC) in the second part of this thesis. Each of
the chapters include detailed conclusions on the specific techniques of that
chapter. In this last chapter we summarize our contributions, comparing
both approaches, and we look to forward to how our ideas might be put into
practice in the near future.

8.1 Contributions

Let us summarize the contributions in this thesis.

In Chapter 2 we propose a new access control framework called Audit-
based Compliance Control (AC2). AC2 is targeted at dynamic collaborative
environments, such as consultancy firms, or hospitals, where a small group of
users exchange, modify and refine a large number of documents and policies
(as shown in the examples in Chapters 2, 4, and 5). Unlike conventional
access control, we assume that no reference monitor is present to prevent
unauthorized actions, but that user actions are logged and that users can
be asked to justify their actions, a-posteriori - just like in society. Our
framework uses a simple, but expressive, policy language which is based on
first-order predicate logic, extended with an owns predicate, a maySay pred-
icate, and constructs for pre- and post-obligations. To reason about policies
AC2 uses a formal proof system, for which prove an important logical prop-
erty: Cut-elimination (Chapter 3. In Chapter 3 we show an implementation
of the proof system by programming a proof checker (using Twelf) and a
proof finder (using Prolog).

In the second part of this thesis we take a more evolutionary approach to
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AC2 RBAC◦

Expressivity + –

Decidability – +

Policy administration + –

Policy distribution + –

Policy enforcement + –

Adoption – +

Table 8.1: Comparison between AC2 and RBAC◦.

answering the question of designing a flexible access control system for dy-
namic collaborative environments, by proposing two extensions for standard
RBAC. RBAC is a common access control standard, and is implemented or
supported in many systems. Let us briefly go over the conclusions of the sec-
ond part of our thesis. In Chapter 6 we propose a general class of administra-
tive policies, and a formal definition of administrative refinement. We show
that there is a natural ordering for administrative privileges which yields
administrative refinements of policies, and that this ordering is decidable.
In Chapter 7 we define a model for the administration of RBAC standard
in a distributed system, formal safety and availability requirements, and
we propose administrative procedures for the deployment of policy changes
across distributed systems.

8.2 Comparison

Let us compare the two different approaches, by comparing the main features
and drawbacks of the two systems: Expressivity (of the policy language), de-
cidability (of the policy language), policy administration, policy distribution,
policy enforcement, and (ease of) adoption. For the sake of brevity, we re-
fer to the extensions proposed in Chapter 6 and Chapter 7 by RBAC◦. We
summarize the comparison in Table 8.1, and go over the comparison in more
detail below.

• Expressivity: The policy language of AC2 is an extension of first-
order logics, with the owns predicates, the connective maySay for ad-
ministrative privileges, and constructs for pre- and post- obligations.
Standard RBAC on the other hand is a subset of propositional logic,
and allows only policies of the form user → role , role → role ′, or
role → (a, o), where a denotes an action, and o denotes an object.
RBAC◦ extends this with administrative privileges, but their expres-
sive power is limited compared to the administrative privileges in AC2.
In fact all policies in RBAC◦ can be expressed in the AC2 policy lan-
guage.
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• Decidability: As mentioned above, AC2 is more expressive than
RBAC◦. This comes at a price. The policy language of AC2 is only
semi-decidable, while the language of RBAC◦ is decidable. The proof
finding procedure for AC2 (in Section 3.3) is in fact more compli-
cated than the procedure for RBAC◦(in Section 6.4.2). The reason
is that while AC2 is based on first-order logic, RBAC◦ is based on
propositional logic. Although, as we have argued in Chapter 2 semi-
decidability of AC2 is not problematic in the setting of AC2 it is cer-
tainly a drawback.

• Policy administration: Let us now focus on policy administration,
and on how administrative privileges are expressed and obtained. Both
AC2 and RBAC◦ contain (connectives for) administrative privileges.
In AC2 administrative privileges are expressed using maySay , while in
RBAC◦ administrative privileges are expressed using � (assign). Both
AC2 and RBAC◦ support administrative refinement, which allows ad-
ministrators or users to assign a small set of administrative privileges,
from which more (weaker) administrative privileges can be derived.
The main difference is that while maySay can be used with any AC2

policy (maySay(a, b, φ) is the privilege for a to say φ to b, where φ is
an arbitrary AC2 policy), the � construct only allows to assign users
to roles, roles to roles, or roles to privileges.

Another difference is that in RBAC◦ administrative privileges are ini-
tially assigned by the system administrator, while in AC2 adminis-
trative privileges can also be derived from the owns predicate. Now
although in some settings, for example in a hospital, the advantage of
this derivation may be limited (doctors do not own the health records).
This extra option may provide an important advantage in settings
where users create documents often - such as in research and consul-
tancy firm.

• Policy distribution: In AC2 policy distribution is completely de-
centralized: policies are sent by users to other users, using the action
comm, and they are provided to auditors by the users, during audits. In
RBAC◦, on the other hand, users do not need to collect and present
(parts of) policies. Users may even be ignorant of the policies that
apply, because policies are distributed to and processed by the refer-
ence monitor(s), in a centralized (Chapter 6) or decentralized fashion
(Chapter 7). In RBAC users only carry authentication credentials. At
first sight this may seem more easy for the users. On the other hand,
collecting the appropriate (parts of) policies may be difficult, especially
in dynamic collaborative environments across organization boundaries
when many different policies may apply to an object (or a user action).
AC2 on the other hand is more flexible and allows a mixed set-up where
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the auditor collects some general policies beforehand, and requires the
user to provide only the missing parts.

• Policy enforcement: In AC2 policy enforcement is based on a-
posteriori compliance audits. Auditors check logs of the user actions,
and they can decide to ask the user for justification proofs. The audi-
tor checks a-posteriori whether there are policies that justify the user’s
action. Inappropriate behavior of users is hence only deterred, but not
prevented. In RBAC◦, on the other hand, policy enforcement is done
in a conventional a-priori way: Prior to granting the action the RBAC
reference monitor checks its policy to see whether the action should
be allowed. Logs of user actions are only checked manually by system
administrators to see whether or not the reference monitor has been
working correctly. Checking a-posteriori gives more flexibility to users,
and it allows to cope with unexpected circumstances more easily.

• Adoption: In AC2 users can behave badly. This is very different
from RBAC◦ where the reference monitor prevents users from behav-
ing badly. In fact a crucial requirement to deploy AC2 successfully
is that the users actions are logged, and that the users can be held
accountable for their actions. As discussed in Chapter 2, these require-
ments exclude certain settings. RBAC◦ can be deployed for instance
in more open settings, where users can not be held accountable for
their actions.

Moreover, RBAC is already used in many commercial, and open source
products, while AC2 is a new access control framework. The RBAC◦

extensions could be deployed on top of standard RBAC, making exist-
ing RBAC systems more flexible.

Having compared the two approaches let us briefly discuss how the two
approaches could be combined. RBAC is already widely deployed, and sup-
ported in existing systems and applications, and RBAC◦ policies can be
expressed using the AC2 policy language. The main drawback of RBAC◦

is that it does not allow a-posteriori enforcement of policies. This makes it
difficult to use RBAC◦ in dynamic collaborative environments. It would be
interesting to see whether in closed settings the a-priori enforcement that is
typical of RBAC◦ could be removed partially or temporarily, and replaced
by an AC2 auditing procedure. Recently it has been suggested that such
an approach would allow to implement RBAC policies in a dynamic service-
oriented architecture (SOA) [55]. We foresee a number of issues that would
have to be resolved here: 1) User actions would have to be logged. 2) Users
would have to be held accountable for their actions, and 3) RBAC◦ policies
would have to be known to the users and systems that are performing the
actions, a-priori. The first two issues seem relatively easy to solve: As men-
tioned in Chapter 2, user actions are often logged already, and users are
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often held accountable for their actions. The third issue may be more chal-
lenging: While general usage policies are often communicated to users (say
employees or doctors), the details of RBAC role and privilege assignments
are usually hidden from the users. Using an AC2 audit procedure in an
RBAC system would require a kind of proof finder that explains to the user
which RBAC◦ role or privilege assignments may be missing, or needed to
justify a certain action. This seems to be an interesting direction for future
research.

8.3 Outlook

Let us conclude by looking at some recent developments that show how our
ideas might be put into practice in the near future.

• It has been argued that AC2 has advantages over RBAC for imple-
menting access control in the recently built Service Oriented Archi-
tecture (SOA) of a Dutch insurance company [55]. Koot states that,
because the SOA contains systems and data from so many different
organizations, RBAC is difficult to implement. The reason is that all
the different organizations issue different RBAC policies, that change
often and unexpectedly. Keeping the different policies realigned is a
difficult task. Koot argues that, since the users and systems in the
SOA are authenticated and to some extent trusted, AC2 could pro-
vide a better solution to enforce detailed policies based on roles. We
look forward to seeing whether this would simplify the implementation
of access control in this setting.

• Recently it has become clear that a simple form of a-posteriori access
control will be used in the future Dutch electronic health record system
(AORTA) [46]. AORTA allows doctors and other health care profes-
sionals to find and access health records of patients, through a national
register of health records. The register consists of pointers to health
records at the various medical subsystems used across the country.
A central node in AORTA provides access to health records, logging,
and it checks if requests where issued by doctors (who all have an ac-
cess card, to sign requests). All the doctors are expected to only access
health records when this is allowed by the existing medical regulations.
Technically speaking there are no access control policies in place that
enforce all or parts of these regulations. The reason is that the data
exchange within and across medical organizations is too complex, and
unpredictable, to allow a successful deployment of a conventional (a-
priori) access control. AORTA, however, does feature an audit log,
where access to health records is logged, and doctors can be held ac-
countable a-posteriori, for justifying their actions. Also patient consent
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is still implemented in a very rudimentary way: The Dutch minister
of Health, Welfare and Sports has recently asked patients to opt-in or
out of the national register, where opt-out means that the record will
not be listed in the register. The AORTA specifications mentions more
detailed policies, such as ’Only access for doctor X’, or ’Notify patient
before each access’, but they will not be implemented in the first re-
leases, because they are technically challenging. Flaws in the policy
enforcement could have dire consequences. We believe that when more
detailed privacy policies will be introduced in future AORTA releases,
then automated audit procedures and machine-readable justification
proofs (like those used in AC2) could be helpful to enforce policy com-
pliance. Automated audit procedures would allow the auditors to au-
tomatically check a large number of user actions for compliance, ask
the users involved for further justifications. AC2 would provide a way
to check compliance against detailed access control policies, without
running the risk that health records are unavailable due to outdated
or incorrect policies.

• The Dutch government has recently built an online repository, called
GMV, for authorizations, where citizens and enterprises can store del-
egations for transactions [45]. GMV holds triples of the form (a, s, b),
where a and b are names of citizen or enterprise, and s the name of a
service such as tax declaration 2008. For example a may be citizen Al-
ice, and b accountant Bob who helps out with Alice’s tax declarations.
The GMV triple is later retrieved by the system providing service s
at the moment that b requests s on behalf of a. The semantics of
a GMV triple is as follows: a says b can consume s on behalf of a.
While GMV is currently only being used for a couple of basic per-
missions for services, the future releases will probably contain sets of
permissions (roles) like all tax declarations. Let us see how this relates
to the AC2 framework introduced in Chapter 2: The authorization
triples in GMV could be mapped to AC2 policies by the conclusion
derivation function yielding the permission s(a). Let s′(x) denote the
more general permission to do all tax declaration on behalf of citizen
x. In AC2 this would be expressed as ∀x.s

′(x) → s(x). AC2 can also
be used to model how the repository decides to accept a triple or not:
The policy φ = ∀x,y.maySay(x , y , s ′(x )) is the permission for users to
authorize other for their tax declarations s′ on their behalf. In AC2

maySay(()a, b, s(a)) can be derived from φ using the refine rule. In
this setting the audit procedure of AC2 could be used to check that
b was allowed to request service s on behalf of a. First the system
providing s could be audited, and in this step the auditor would ob-
tain the triple (a, s, b). Then the auditor could check whether a was
allowed to issue the triple. In this step the auditor would check the
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more general policy φ, and the evidence that a said s(a) to b. After
these two steps the auditor would have established that the action by
b complies to the policies. If not b can be held accountable for his
actions.

We believe that there are still other settings where our ideas could be
put into practice in the near future. There are many settings where detailed
access control policies must be enforced, but where conventional access con-
trol mechanisms are cumbersome to setup and use. To name a couple, in
dynamic military coalitions, and in large enterprises that have to adhere
to SOX legislation. We look forward to seeing future application of our
ideas, and we look forward to future research into flexible access control for
dynamic collaborative environments.
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